BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15993486)

  • 1. Generation of cell adhesive substrates using peptide fluoralkyl surface modifiers.
    Ernsting MJ; Bonin GC; Yang M; Labow RS; Santerre JP
    Biomaterials; 2005 Nov; 26(33):6536-46. PubMed ID: 15993486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human monocyte adhesion onto RGD and PHSRN peptides delivered to the surface of a polycarbonate polyurethane using bioactive fluorinated surface modifiers.
    Ernsting MJ; Labow RS; Santerre JP
    J Biomed Mater Res A; 2007 Dec; 83(3):759-69. PubMed ID: 17559113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface immobilization of elastin-like polypeptides using fluorinated surface modifying additives.
    Blit PH; Battiston KG; Woodhouse KA; Santerre JP
    J Biomed Mater Res A; 2011 Mar; 96(4):648-62. PubMed ID: 21268240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivation of porous polyurethane scaffolds using fluorinated RGD surface modifiers.
    Blit PH; Shen YH; Ernsting MJ; Woodhouse KA; Santerre JP
    J Biomed Mater Res A; 2010 Sep; 94(4):1226-35. PubMed ID: 20694989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides.
    Lin HB; Sun W; Mosher DF; García-Echeverría C; Schaufelberger K; Lelkes PI; Cooper SL
    J Biomed Mater Res; 1994 Mar; 28(3):329-42. PubMed ID: 8077248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular phospholipase A2 expression and location in human macrophages: influence of synthetic material surface chemistry.
    Dinnes DL; Santerre JP; Labow RS
    J Cell Physiol; 2008 Jan; 214(1):136-44. PubMed ID: 17565722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of biodegradable and non-biodegradable material surfaces on the differentiation of human monocyte-derived macrophages.
    Dinnes DL; Santerre JP; Labow RS
    Differentiation; 2008 Mar; 76(3):232-44. PubMed ID: 17924965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroactive polymer-peptide conjugates for adhesive biointerfaces.
    Maione S; Gil AM; Fabregat G; Del Valle LJ; Triguero J; Laurent A; Jacquemin D; Estrany F; Jiménez AI; Zanuy D; Cativiela C; Alemán C
    Biomater Sci; 2015 Oct; 3(10):1395-405. PubMed ID: 26372182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.
    Sun H; Wirsén A; Albertsson AC
    Biomacromolecules; 2004; 5(6):2275-80. PubMed ID: 15530042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration.
    Kim S; Chung EH; Gilbert M; Healy KE
    J Biomed Mater Res A; 2005 Oct; 75(1):73-88. PubMed ID: 16049978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering bio-adhesive functions in an antimicrobial polymer multilayer.
    He T; Zhang Y; Lai AC; Chan V
    Biomed Mater; 2015 Jan; 10(1):015015. PubMed ID: 25634058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolytic degradation of poly(carbonate)-urethanes by monocyte-derived macrophages.
    Labow RS; Meek E; Santerre JP
    Biomaterials; 2001 Nov; 22(22):3025-33. PubMed ID: 11575477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between PEO tether length and ligand spacing governs cell spreading on RGD-modified PMMA-g-PEO comb copolymers.
    Kuhlman W; Taniguchi I; Griffith LG; Mayes AM
    Biomacromolecules; 2007 Oct; 8(10):3206-13. PubMed ID: 17877394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive polymer fibers to direct endothelial cell growth in a three-dimensional environment.
    Hadjizadeh A; Doillon CJ; Vermette P
    Biomacromolecules; 2007 Mar; 8(3):864-73. PubMed ID: 17309296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity.
    Choi WS; Bae JW; Lim HR; Joung YK; Park JC; Kwon IK; Park KD
    Biomed Mater; 2008 Dec; 3(4):044104. PubMed ID: 19029617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh.
    Kim TG; Park TG
    Tissue Eng; 2006 Feb; 12(2):221-33. PubMed ID: 16548681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method.
    Yoon JJ; Song SH; Lee DS; Park TG
    Biomaterials; 2004 Nov; 25(25):5613-20. PubMed ID: 15159077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide.
    Irvine DJ; Ruzette AV; Mayes AM; Griffith LG
    Biomacromolecules; 2001; 2(2):545-56. PubMed ID: 11749219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial.
    Cook AD; Hrkach JS; Gao NN; Johnson IM; Pajvani UB; Cannizzaro SM; Langer R
    J Biomed Mater Res; 1997 Jun; 35(4):513-23. PubMed ID: 9189829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability.
    Lim JY; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomacromolecules; 2005; 6(6):3319-27. PubMed ID: 16283761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.