These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15993700)

  • 1. Removal of selenium from river water by a microbial community enhanced with Enterobacter taylorae in organic carbon coated sand columns.
    Zhang Y; Frankenberger WT
    Sci Total Environ; 2005 Jun; 346(1-3):280-5. PubMed ID: 15993700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial reduction of selenate to elemental selenium utilizing molasses as a carbon source.
    Zhang Y; Okeke BC; Frankenberger WT
    Bioresour Technol; 2008 Mar; 99(5):1267-73. PubMed ID: 17512724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of selenate metabolized by Enterobacter taylorae isolated from rice straw.
    Zahir ZA; Zhang Y; Frankenberger WT
    J Agric Food Chem; 2003 Jun; 51(12):3609-13. PubMed ID: 12769533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting reduction of selenate to elemental selenium in agricultural drainage water by Enterobacter taylorae.
    Zhang Y; Zahir ZA; Frankenberger WT
    J Agric Food Chem; 2003 Nov; 51(24):7073-8. PubMed ID: 14611174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of zero-valent iron and a redox mediator on removal of selenium in agricultural drainage water.
    Zhang Y; Amrhein C; Chang A; Frankenberger WT
    Sci Total Environ; 2008 Dec; 407(1):89-96. PubMed ID: 18937963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of redox mediator to accelerate selenate reduction to elemental selenium by Enterobacter taylorae.
    Zhang Y; Zahir ZA; Amrhein C; Chang A; Frankenberger WT
    J Agric Food Chem; 2007 Jul; 55(14):5714-7. PubMed ID: 17579423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of selenate in river and drainage waters by Citrobacter braakii enhanced with zero-valent iron.
    Zhang Y; Frankenberger WT
    J Agric Food Chem; 2006 Jan; 54(1):152-6. PubMed ID: 16390192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenate reduction in river water by Citerobacter freundii isolated from a selenium-contaminated sediment.
    Zhang Y; Siddique T; Wang J; Frankenberger WT
    J Agric Food Chem; 2004 Mar; 52(6):1594-600. PubMed ID: 15030217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial groundwater treatment: biofilm activity and organic carbon removal performance.
    LÄngmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Res; 2004 Feb; 38(3):740-8. PubMed ID: 14723944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agro-industrial waste 'wheat bran' for the biosorptive remediation of selenium through continuous up-flow fixed-bed column.
    Hasan SH; Ranjan D; Talat M
    J Hazard Mater; 2010 Sep; 181(1-3):1134-42. PubMed ID: 20573445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron.
    Zhang Y; Amrhein C; Frankenberger WT
    Sci Total Environ; 2005 Nov; 350(1-3):1-11. PubMed ID: 16227069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting removal of selenate in agricultural drainage water utilizing rice straw.
    Zhang Y; Frankenberger WT
    Sci Total Environ; 2003 Apr; 305(1-3):207-16. PubMed ID: 12670769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry.
    Xiong C; He M; Hu B
    Talanta; 2008 Aug; 76(4):772-9. PubMed ID: 18656657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a constructed wetland water treatment system for selenium removal: use of mesocosms to evaluate design parameters.
    Huang JC; Passeport E; Terry N
    Environ Sci Technol; 2012 Nov; 46(21):12021-9. PubMed ID: 23057702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of Escherichia coli through variably saturated sand columns and modeling approaches.
    Jiang G; Noonan MJ; Buchan GD; Smith N
    J Contam Hydrol; 2007 Aug; 93(1-4):2-20. PubMed ID: 17336421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of sediment bacteria involved in selenium reduction.
    Siddique T; Zhang Y; Okeke BC; Frankenberger WT
    Bioresour Technol; 2006 May; 97(8):1041-9. PubMed ID: 16324840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: batch and columns tests.
    Bleiman N; Mishael YG
    J Hazard Mater; 2010 Nov; 183(1-3):590-5. PubMed ID: 20708334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of As(III) in a column reactor packed with iron-coated sand and manganese-coated sand.
    Chang YY; Song KH; Yang JK
    J Hazard Mater; 2008 Feb; 150(3):565-72. PubMed ID: 17570581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial reduction of selenium in coal mine tailings pond sediment.
    Siddique T; Arocena JM; Thring RW; Zhang Y
    J Environ Qual; 2007; 36(3):621-7. PubMed ID: 17412898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic and inorganic selenium speciation in environmental and biological samples by nanometer-sized materials packed dual-column separation/preconcentration on-line coupled with ICP-MS.
    Huang C; Hu B; He M; Duan J
    J Mass Spectrom; 2008 Mar; 43(3):336-45. PubMed ID: 17994643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.