These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1599489)

  • 41. Strain differences of the ability to hydroxylate methotrexate in rats.
    Kitamura S; Nakatani K; Sugihara K; Ohta S
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 Mar; 122(3):331-6. PubMed ID: 10336093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Subcellular distribution and properties of carbonyl reductase in guinea pig lung.
    Nakayama T; Matsuura K; Nakagawa M; Hara A; Sawada H
    Arch Biochem Biophys; 1988 Aug; 264(2):492-501. PubMed ID: 3041913
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana.
    Hoff T; Frandsen GI; Rocher A; Mundy J
    Biochim Biophys Acta; 1998 Jul; 1398(3):397-402. PubMed ID: 9655945
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distribution and pathophysiologic role of molybdenum-containing enzymes.
    Moriwaki Y; Yamamoto T; Higashino K
    Histol Histopathol; 1997 Apr; 12(2):513-24. PubMed ID: 9151140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sstudies on the enzymes related to steroidogenesis in testicular tissue of guinea pig.
    Inano H; Egusa M; Tamaoki B
    Biochim Biophys Acta; 1967 Aug; 144(1):165-7. PubMed ID: 6055215
    [No Abstract]   [Full Text] [Related]  

  • 46. Inhibitory effects of flavonoids on molybdenum hydroxylases activity.
    Rashidi MR; Nazemiyeh H
    Expert Opin Drug Metab Toxicol; 2010 Feb; 6(2):133-52. PubMed ID: 20095789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential response of cytosolic, microsomal, and mitochondrial glutathione S-transferases to xenobiotic inducers.
    Bhagwat SV; Mullick J; Avadhani NG; Raza H
    Int J Oncol; 1998 Aug; 13(2):281-8. PubMed ID: 9664123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology.
    Garattini E; Mendel R; Romão MJ; Wright R; Terao M
    Biochem J; 2003 May; 372(Pt 1):15-32. PubMed ID: 12578558
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drug-metabolizing ability of molybdenum hydroxylases.
    Kitamura S; Sugihara K; Ohta S
    Drug Metab Pharmacokinet; 2006 Apr; 21(2):83-98. PubMed ID: 16702728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative subcellular distribution of benzaldehyde and acetaldehyde dehydrogenase activities in two hepatoma cell lines and in normal hepatocytes.
    Ferro M; Muzio G; Bassi AM; Biocca ME; Canuto RA
    Cell Biochem Funct; 1991 Jul; 9(3):149-54. PubMed ID: 1661206
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.
    Panoutsopoulos GI; Kouretas D; Beedham C
    Chem Res Toxicol; 2004 Oct; 17(10):1368-76. PubMed ID: 15487898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The use of diaminobenzidine for spectrophotometric and acrylamide gel detection of sulfite oxidase and its applicability to hydrogen peroxide-generating enzymes.
    Cohen HJ
    Anal Biochem; 1973 May; 53(1):208-22. PubMed ID: 4145739
    [No Abstract]   [Full Text] [Related]  

  • 53. Substrate specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase for methyl- and nitrobenzaldehydes.
    Veskoukis AS; Kouretas D; Panoutsopoulos GI
    Eur J Drug Metab Pharmacokinet; 2006; 31(1):11-6. PubMed ID: 16715777
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat.
    Plaut GW; Cook M; Aogaichi T
    Biochim Biophys Acta; 1983 Oct; 760(2):300-8. PubMed ID: 6414522
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of prostaglandin synthetase in guinea pig lung. Isolation of a new prostaglandin derivative from arachidonic acid.
    Parkes DG; Eling TE
    Biochemistry; 1974 Jun; 13(12):2598-604. PubMed ID: 4831906
    [No Abstract]   [Full Text] [Related]  

  • 56. Role of guinea pig and rabbit hepatic aldehyde oxidase in oxidative in vitro metabolism of cinchona antimalarials.
    Beedham C; al-Tayib Y; Smith JA
    Drug Metab Dispos; 1992; 20(6):889-95. PubMed ID: 1362942
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of ethanol ingestion on the aldehyde dehydrogenases of rat liver.
    Greenfield NJ; Pietruszko R; Lin G; Lester D
    Biochim Biophys Acta; 1976 May; 428(3):627-32. PubMed ID: 1276172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The localization of cholinephosphotransferase in the outer membrane of guinea-pig lung mitochondria.
    Sikpi MO; Das SK
    Biochim Biophys Acta; 1987 May; 899(1):35-43. PubMed ID: 3032255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A sulfoxide-reducing enzyme system consisting of aldehyde oxidase and xanthine oxidase--a new electron transfer system.
    Kitamura S; Tatsumi K
    Chem Pharm Bull (Tokyo); 1983 Feb; 31(2):760-3. PubMed ID: 6688381
    [No Abstract]   [Full Text] [Related]  

  • 60. Extremely high drug-reductase activity based on aldehyde oxidase in monkey liver.
    Kitamura S; Ohashi KNK ; Sugihara K; Hosokawa R; Akagawa Y; Ohta S
    Biol Pharm Bull; 2001 Jul; 24(7):856-9. PubMed ID: 11456132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.