BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1599517)

  • 1. Multiple retinoid dehydrogenases in testes cytosol from alcohol dehydrogenase negative or positive deermice.
    Posch KC; Napoli JL
    Biochem Pharmacol; 1992 May; 43(10):2296-8. PubMed ID: 1599517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoic acid synthesis by cytosol from the alcohol dehydrogenase negative deermouse.
    Posch KC; Enright WJ; Napoli JL
    Arch Biochem Biophys; 1989 Oct; 274(1):171-8. PubMed ID: 2774571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinol forms retinoic acid via retinal.
    Kim CI; Leo MA; Lieber CS
    Arch Biochem Biophys; 1992 May; 294(2):388-93. PubMed ID: 1567193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol.
    Boerman MH; Napoli JL
    J Biol Chem; 1996 Mar; 271(10):5610-6. PubMed ID: 8621422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of 9-cis-retinoic acid in vivo. The roles of different retinol dehydrogenases and a structure-activity analysis of microsomal retinol dehydrogenases.
    Tryggvason K; Romert A; Eriksson U
    J Biol Chem; 2001 Jun; 276(22):19253-8. PubMed ID: 11279029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid.
    Duester G; Mic FA; Molotkov A
    Chem Biol Interact; 2003 Feb; 143-144():201-10. PubMed ID: 12604205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of all-trans-retinoic acid from retinal. Recognition of retinal bound to cellular retinol binding protein (type I) as substrate by a purified cytosolic dehydrogenase.
    Posch KC; Burns RD; Napoli JL
    J Biol Chem; 1992 Sep; 267(27):19676-82. PubMed ID: 1527087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of class I and class IV alcohol dehydrogenases in mouse testis and epididymis: potential retinol dehydrogenases for endogenous retinoic acid synthesis.
    Deltour L; Haselbeck RJ; Ang HL; Duester G
    Biol Reprod; 1997 Jan; 56(1):102-9. PubMed ID: 9002638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehydrogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis.
    Duester G
    Biochemistry; 1996 Sep; 35(38):12221-7. PubMed ID: 8823154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic dissection of retinoid dehydrogenases.
    Duester G
    Chem Biol Interact; 2001 Jan; 130-132(1-3):469-80. PubMed ID: 11306068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD+-dependent retinol dehydrogenase in liver microsomes.
    Leo MA; Kim CI; Lieber CS
    Arch Biochem Biophys; 1987 Dec; 259(2):241-9. PubMed ID: 3322195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus).
    Dudley BF; Winston GW
    Arch Biochem Biophys; 1995 Feb; 316(2):879-85. PubMed ID: 7532387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid.
    Duester G
    Eur J Biochem; 2000 Jul; 267(14):4315-24. PubMed ID: 10880953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol dehydrogenase as a critical mediator of retinoic acid synthesis from vitamin A in the mouse embryo.
    Duester G
    J Nutr; 1998 Feb; 128(2 Suppl):459S-462S. PubMed ID: 9478048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Class IV alcohol/retinol dehydrogenase localization in epidermal basal layer: potential site of retinoic acid synthesis during skin development.
    Haselbeck RJ; Ang HL; Duester G
    Dev Dyn; 1997 Apr; 208(4):447-53. PubMed ID: 9097017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rat liver cytosolic retinal dehydrogenase: comparison of 13-cis-, 9-cis-, and all-trans-retinal as substrates and effects of cellular retinoid-binding proteins and retinoic acid on activity.
    el Akawi Z; Napoli JL
    Biochemistry; 1994 Feb; 33(7):1938-43. PubMed ID: 8110799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of retinoic acid formation.
    Wolf G
    Nutr Rev; 1996 Jun; 54(6):182-4. PubMed ID: 8810827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3.
    Molotkov A; Fan X; Deltour L; Foglio MH; Martras S; Farrés J; Parés X; Duester G
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5337-42. PubMed ID: 11959987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity.
    Porté S; Xavier Ruiz F; Giménez J; Molist I; Alvarez S; Domínguez M; Alvarez R; de Lera AR; Parés X; Farrés J
    Chem Biol Interact; 2013 Feb; 202(1-3):186-94. PubMed ID: 23220004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of rat cytosolic 9-cis-retinol dehydrogenase activity and enzymatic characterization of rat ADHII.
    Popescu G; Napoli JL
    Biochim Biophys Acta; 2000 Jan; 1476(1):43-52. PubMed ID: 10606766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.