These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 15995248)
1. Identifying and engineering ion pairs in adenylate kinases. Insights from molecular dynamics simulations of thermophilic and mesophilic homologues. Bae E; Phillips GN J Biol Chem; 2005 Sep; 280(35):30943-8. PubMed ID: 15995248 [TBL] [Abstract][Full Text] [Related]
2. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases. Moon S; Bannen RM; Rutkoski TJ; Phillips GN; Bae E Proteins; 2014 Oct; 82(10):2631-42. PubMed ID: 24931334 [TBL] [Abstract][Full Text] [Related]
3. Roles of static and dynamic domains in stability and catalysis of adenylate kinase. Bae E; Phillips GN Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2132-7. PubMed ID: 16452168 [TBL] [Abstract][Full Text] [Related]
4. Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. Bae E; Phillips GN J Biol Chem; 2004 Jul; 279(27):28202-8. PubMed ID: 15100224 [TBL] [Abstract][Full Text] [Related]
5. Zinc, a novel structural element found in the family of bacterial adenylate kinases. Glaser P; Presecan E; Delepierre M; Surewicz WK; Mantsch HH; Bârzu O; Gilles AM Biochemistry; 1992 Mar; 31(12):3038-43. PubMed ID: 1554691 [TBL] [Abstract][Full Text] [Related]
6. Effect of ion pair on thermostability of F1 protease: integration of computational and experimental approaches. Rahman RN; Muhd Noor ND; Ibrahim NA; Salleh AB; Basri M J Microbiol Biotechnol; 2012 Jan; 22(1):34-45. PubMed ID: 22297217 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection. Peña MI; Davlieva M; Bennett MR; Olson JS; Shamoo Y Mol Syst Biol; 2010 Jul; 6():387. PubMed ID: 20631681 [TBL] [Abstract][Full Text] [Related]
8. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability. Christodoulou E; Rypniewski WR; Vorgias CR Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263 [TBL] [Abstract][Full Text] [Related]
9. Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism Marinibacillus marinus. Davlieva M; Shamoo Y Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Aug; 65(Pt 8):751-6. PubMed ID: 19652331 [TBL] [Abstract][Full Text] [Related]
10. An integrated approach for thermal stabilization of a mesophilic adenylate kinase. Moon S; Jung DK; Phillips GN; Bae E Proteins; 2014 Sep; 82(9):1947-59. PubMed ID: 24615904 [TBL] [Abstract][Full Text] [Related]
11. The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. Davies GJ; Gamblin SJ; Littlechild JA; Watson HC Proteins; 1993 Mar; 15(3):283-9. PubMed ID: 8456097 [TBL] [Abstract][Full Text] [Related]
12. The thermostability of DNA-binding protein HU from mesophilic, thermophilic, and extreme thermophilic bacteria. Christodoulou E; Vorgias CE Extremophiles; 2002 Feb; 6(1):21-31. PubMed ID: 11878558 [TBL] [Abstract][Full Text] [Related]
13. Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability. Couñago R; Shamoo Y Extremophiles; 2005 Apr; 9(2):135-44. PubMed ID: 15647886 [TBL] [Abstract][Full Text] [Related]
14. Interconversion of functional motions between mesophilic and thermophilic adenylate kinases. Daily MD; Phillips GN; Cui Q PLoS Comput Biol; 2011 Jul; 7(7):e1002103. PubMed ID: 21779157 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a trimeric archaeal adenylate kinase from the mesophile Methanococcus maripaludis with an unusually broad functional range and thermal stability. Davlieva M; Shamoo Y Proteins; 2010 Feb; 78(2):357-64. PubMed ID: 19731371 [TBL] [Abstract][Full Text] [Related]
16. A thermodynamic comparison of HPr proteins from extremophilic organisms. Razvi A; Scholtz JM Biochemistry; 2006 Apr; 45(13):4084-92. PubMed ID: 16566582 [TBL] [Abstract][Full Text] [Related]
17. Electrostatic stabilization of a thermophilic cold shock protein. Perl D; Schmid FX J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561 [TBL] [Abstract][Full Text] [Related]
18. Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. Haney PJ; Stees M; Konisky J J Biol Chem; 1999 Oct; 274(40):28453-8. PubMed ID: 10497207 [TBL] [Abstract][Full Text] [Related]
19. Study on the relationship between cyclodextrin glycosyltransferase's thermostability and salt bridge by molecular dynamics simulation. Fu Y; Ding Y; Chen Z; Sun J; Fang W; Xu W Protein Pept Lett; 2010 Nov; 17(11):1403-11. PubMed ID: 20594159 [TBL] [Abstract][Full Text] [Related]
20. Molecular Dynamics Simulations of HPr Proteins from a Thermophilic and a Mesophilic Organism: A Comparative Thermal Study. Gómez-Flores AK; López-Pérez E; Alas-Guardado SJ Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]