BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15995348)

  • 1. Biochemical analysis of a cytosolic small heat shock protein, NtHSP18.3, from Nicotiana tabacum.
    Yu JH; Kim KP; Park SM; Hong CB
    Mol Cells; 2005 Jun; 19(3):328-33. PubMed ID: 15995348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress condition in vitro.
    Park SM; Kim KP; Joe MK; Lee MO; Koo HJ; Hong CB
    Plant Cell Environ; 2015 Apr; 38(4):767-76. PubMed ID: 25158805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperone activity of cytosolic small heat shock proteins from wheat.
    Basha E; Lee GJ; Demeler B; Vierling E
    Eur J Biochem; 2004 Apr; 271(8):1426-36. PubMed ID: 15066169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.
    Lee GJ; Roseman AM; Saibil HR; Vierling E
    EMBO J; 1997 Feb; 16(3):659-71. PubMed ID: 9034347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea.
    Lee GJ; Pokala N; Vierling E
    J Biol Chem; 1995 May; 270(18):10432-8. PubMed ID: 7737977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins.
    Studer S; Narberhaus F
    J Biol Chem; 2000 Nov; 275(47):37212-8. PubMed ID: 10978322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP.
    Smýkal P; Masín J; Hrdý I; Konopásek I; Zárský V
    Plant J; 2000 Sep; 23(6):703-13. PubMed ID: 10998182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol.
    Basha E; Jones C; Wysocki V; Vierling E
    J Biol Chem; 2010 Apr; 285(15):11489-97. PubMed ID: 20145254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
    Basha E; Friedrich KL; Vierling E
    J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system.
    Kubo Y; Tsunehiro T; Nishikawa S; Nakai M; Ikeda E; Toh-e A; Morishima N; Shibata T; Endo T
    J Mol Biol; 1999 Feb; 286(2):447-64. PubMed ID: 9973563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein.
    Joe MK; Park SM; Lee YS; Hwang DS; Hong CB
    Mol Cells; 2000 Oct; 10(5):519-24. PubMed ID: 11101142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of Xenopus small heat shock protein, Hsp30C: the carboxyl end is required for stability and chaperone activity.
    Fernando P; Heikkila JJ
    Cell Stress Chaperones; 2000 Apr; 5(2):148-59. PubMed ID: 11147966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of a small heat shock protein of the fission yeast, Schizosaccharomyces pombe, with a denatured protein at elevated temperature.
    Hirose M; Tohda H; Giga-Hama Y; Tsushima R; Zako T; Iizuka R; Pack C; Kinjo M; Ishii N; Yohda M
    J Biol Chem; 2005 Sep; 280(38):32586-93. PubMed ID: 16055437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster.
    Morrow G; Heikkila JJ; Tanguay RM
    Cell Stress Chaperones; 2006; 11(1):51-60. PubMed ID: 16572729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the structure and expression pattern for a low molecular weight heat-shock protein cDNA clone from Nicotiana tabacum.
    Park SM; Hong CB
    Mol Cells; 1998 Oct; 8(5):594-9. PubMed ID: 9856347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile.
    Kim R; Kim KK; Yokota H; Kim SH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9129-33. PubMed ID: 9689045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a sHsp of Schizosaccharomyces pombe, SpHsp15.8, and the implication of its functional mechanism by comparison with another sHsp, SpHsp16.0.
    Sugino C; Hirose M; Tohda H; Yoshinari Y; Abe T; Giga-Hama Y; Iizuka R; Shimizu M; Kidokoro S; Ishii N; Yohda M
    Proteins; 2009 Jan; 74(1):6-17. PubMed ID: 18543332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of citrate synthase thermal aggregation in vitro by recombinant small heat shock proteins.
    Gong W; Yue M; Xie B; Wan F; Guo J
    J Microbiol Biotechnol; 2009 Dec; 19(12):1628-34. PubMed ID: 20075630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.