These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

716 related articles for article (PubMed ID: 15995854)

  • 1. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
    Meagher RB; Heaton AC
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression.
    Dhankher OP; Li Y; Rosen BP; Shi J; Salt D; Senecoff JF; Sashti NA; Meagher RB
    Nat Biotechnol; 2002 Nov; 20(11):1140-5. PubMed ID: 12368812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach.
    Chen Y; Xu W; Shen H; Yan H; Xu W; He Z; Ma M
    Environ Sci Technol; 2013 Aug; 47(16):9355-62. PubMed ID: 23899224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hijacking membrane transporters for arsenic phytoextraction.
    LeBlanc MS; McKinney EC; Meagher RB; Smith AP
    J Biotechnol; 2013 Jan; 163(1):1-9. PubMed ID: 23108027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.
    Nagata T; Morita H; Akizawa T; Pan-Hou H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):781-6. PubMed ID: 20393701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.
    Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.
    Park J; Song WY; Ko D; Eom Y; Hansen TH; Schiller M; Lee TG; Martinoia E; Lee Y
    Plant J; 2012 Jan; 69(2):278-88. PubMed ID: 21919981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breeding mercury-breathing plants for environmental cleanup.
    Pilon-Smits E; Pilon M
    Trends Plant Sci; 2000 Jun; 5(6):235-6. PubMed ID: 10838612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation: novel approaches to cleaning up polluted soils.
    Krämer U
    Curr Opin Biotechnol; 2005 Apr; 16(2):133-41. PubMed ID: 15831377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytodetoxification of hazardous organomercurials by genetically engineered plants.
    Bizily SP; Rugh CL; Meagher RB
    Nat Biotechnol; 2000 Feb; 18(2):213-7. PubMed ID: 10657131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase.
    LeBlanc MS; Lima A; Montello P; Kim T; Meagher RB; Merkle S
    Int J Phytoremediation; 2011 Aug; 13(7):657-73. PubMed ID: 21972493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of transgenic plants in the bioremediation of soils contaminated with trace elements.
    Krämer U; Chardonnens AN
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):661-72. PubMed ID: 11525612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of toxic trace elements in soil and water.
    LeDuc DL; Terry N
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):514-20. PubMed ID: 15883830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The shoot-specific expression of gamma-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic.
    Li Y; Dankher OP; Carreira L; Smith AP; Meagher RB
    Plant Physiol; 2006 May; 141(1):288-98. PubMed ID: 16581878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants.
    Bizily SP; Kim T; Kandasamy MK; Meagher RB
    Plant Physiol; 2003 Feb; 131(2):463-71. PubMed ID: 12586871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic hazards: strategies for tolerance and remediation by plants.
    Tripathi RD; Srivastava S; Mishra S; Singh N; Tuli R; Gupta DK; Maathuis FJ
    Trends Biotechnol; 2007 Apr; 25(4):158-65. PubMed ID: 17306392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of transgenic yellow poplar for mercury phytoremediation.
    Rugh CL; Senecoff JF; Meagher RB; Merkle SA
    Nat Biotechnol; 1998 Oct; 16(10):925-8. PubMed ID: 9788347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic plants for phytoremediation: helping nature to clean up environmental pollution.
    Van Aken B
    Trends Biotechnol; 2008 May; 26(5):225-7. PubMed ID: 18353473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pumping out the arsenic.
    Doucleff M; Terry N
    Nat Biotechnol; 2002 Nov; 20(11):1094-5. PubMed ID: 12410252
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 36.