BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15996131)

  • 1. Observations on the macroscopic digestive anatomy of the Himalayan tahr (Hemitragus jemlahicus).
    Clauss M; Hummel J; Vercammen F; Streich WJ
    Anat Histol Embryol; 2005 Aug; 34(4):276-8. PubMed ID: 15996131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters.
    Clauss M; Frey R; Kiefer B; Lechner-Doll M; Loehlein W; Polster C; Rössner GE; Streich WJ
    Oecologia; 2003 Jun; 136(1):14-27. PubMed ID: 12712314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae).
    Ropiquet A; Hassanin A
    Mol Phylogenet Evol; 2005 Jul; 36(1):154-68. PubMed ID: 15904863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores.
    Clauss M; Schwarm A; Ortmann S; Streich WJ; Hummel J
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):249-65. PubMed ID: 17643330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals.
    Munn AJ; Streich WJ; Hummel J; Clauss M
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):78-84. PubMed ID: 18586113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors that alter rumen microbial ecology.
    Russell JB; Rychlik JL
    Science; 2001 May; 292(5519):1119-22. PubMed ID: 11352069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Food specialization in ruminants: the role of endosymbiosis in its formation].
    Sokolov VE; Naumova EI; Zharova GK
    Izv Akad Nauk SSSR Biol; 1989; (2):165-75. PubMed ID: 2745856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Issues and challenges in developing ruminal drug delivery systems.
    Vandamme TF; Ellis KJ
    Adv Drug Deliv Rev; 2004 Jun; 56(10):1415-36. PubMed ID: 15191790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Macroscopic Anatomy of the Giraffe (Giraffa camelopardalis) Digestive Tract.
    Sauer C; Bertelsen MF; Lund P; Weisbjerg MR; Clauss M
    Anat Histol Embryol; 2016 Oct; 45(5):338-49. PubMed ID: 27593556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species.
    Hofmann RR; Streich WJ; Fickel J; Hummel J; Clauss M
    J Morphol; 2008 Feb; 269(2):240-57. PubMed ID: 17957712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces).
    Clauss M; Fritz J; Bayer D; Nygren K; Hammer S; Hatt JM; Südekum KH; Hummel J
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Mar; 152(3):398-406. PubMed ID: 19049897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical constraints on voluntary intake of forages by ruminants.
    Allen MS
    J Anim Sci; 1996 Dec; 74(12):3063-75. PubMed ID: 8994921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intraruminal papillation gradient in wild ruminants of different feeding types: Implications for rumen physiology.
    Clauss M; Hofmann RR; Fickel J; Streich WJ; Hummel J
    J Morphol; 2009 Aug; 270(8):929-42. PubMed ID: 19247992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a domestic Korean black goat (Capra hircus coreanae) with its chest crayon-harnessed in detecting estrus of Himalayan tahrs (Hemitragus jemlahicus).
    Yong H; Lee E
    J Vet Sci; 2014; 15(3):427-32. PubMed ID: 24690603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macropod nutrition.
    Smith JA
    Vet Clin North Am Exot Anim Pract; 2009 May; 12(2):197-208, xiii. PubMed ID: 19341948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative omasum anatomy in ruminants: Relationships with natural diet, digestive physiology, and general considerations on allometric investigations.
    Ehrlich C; Codron D; Hofmann RR; Hummel J; Clauss M
    J Morphol; 2019 Feb; 280(2):259-277. PubMed ID: 30615226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gross intestinal morphometry and allometry in ruminants.
    McGrosky A; Codron D; Müller DWH; Navarrete A; Isler K; Hofmann RR; Clauss M
    J Morphol; 2019 Sep; 280(9):1254-1266. PubMed ID: 31241799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solute and particle retention in the digestive tract of the Phillip's dikdik (Madoqua saltiana phillipsi), a very small browsing ruminant: biological and methodological implications.
    Hebel C; Ortmann S; Hammer S; Hammer C; Fritz J; Hummel J; Clauss M
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jul; 159(3):284-90. PubMed ID: 21457785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic digestive tract anatomy of two small antelopes, the blackbuck (Antilope cervicapra) and the Arabian sand gazelle (Gazella subgutturosa marica).
    Sauer C; Bertelsen MF; Hammer S; Lund P; Weisbjerg MR; Clauss M
    Anat Histol Embryol; 2016 Oct; 45(5):392-8. PubMed ID: 26514913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of the gastrointestinal tract of the Florida manatee, Trichechus manatus latirostris.
    Reynolds JE; Rommel SA
    Anat Rec; 1996 Jul; 245(3):539-58. PubMed ID: 8800413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.