BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15996639)

  • 1. Influence of the dopamine D2 receptor knockout on pain-related behavior in the mouse.
    Mansikka H; Erbs E; Borrelli E; Pertovaara A
    Brain Res; 2005 Aug; 1052(1):82-7. PubMed ID: 15996639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve injury-induced mechanical but not thermal hyperalgesia is attenuated in neurokinin-1 receptor knockout mice.
    Mansikka H; Sheth RN; DeVries C; Lee H; Winchurch R; Raja SN
    Exp Neurol; 2000 Apr; 162(2):343-9. PubMed ID: 10739640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrathecally-administered histamine facilitates nociception through tachykinin NK1 and histamine H1 receptors: a study in histidine decarboxylase gene knockout mice.
    Yoshida A; Mobarakeh JI; Sakurai E; Sakurada S; Orito T; Kuramasu A; Kato M; Yanai K
    Eur J Pharmacol; 2005 Oct; 522(1-3):55-62. PubMed ID: 16212954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal dopamine D2 receptors attenuate neuropathic hypersensitivity in the rat.
    Ansah OB; Leite-Almeida H; Wei H; Pertovaara A
    Exp Neurol; 2007 Jun; 205(2):536-46. PubMed ID: 17451685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased sensitivity to acute and persistent pain in neuron-specific endothelin-1 knockout mice.
    Hasue F; Kuwaki T; Kisanuki YY; Yanagisawa M; Moriya H; Fukuda Y; Shimoyama M
    Neuroscience; 2005; 130(2):349-58. PubMed ID: 15664691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel.
    Kim C; Jun K; Lee T; Kim SS; McEnery MW; Chin H; Kim HL; Park JM; Kim DK; Jung SJ; Kim J; Shin HS
    Mol Cell Neurosci; 2001 Aug; 18(2):235-45. PubMed ID: 11520183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse.
    Keeler BE; Baran CA; Brewer KL; Clemens S
    Exp Neurol; 2012 Dec; 238(2):273-83. PubMed ID: 22995602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral antinociceptive effects of mu- and delta-opioid receptor agonists in NOS2 and NOS1 knockout mice during chronic inflammatory pain.
    Leánez S; Hervera A; Pol O
    Eur J Pharmacol; 2009 Jan; 602(1):41-9. PubMed ID: 19041302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of cellular prion protein in the nociceptive response in mice.
    Meotti FC; Carqueja CL; Gadotti Vde M; Tasca CI; Walz R; Santos AR
    Brain Res; 2007 Jun; 1151():84-90. PubMed ID: 17433806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurokinin-1 receptors are involved in behavioral responses to high-intensity heat stimuli and capsaicin-induced hyperalgesia in mice.
    Mansikka H; Shiotani M; Winchurch R; Raja SN
    Anesthesiology; 1999 Jun; 90(6):1643-9. PubMed ID: 10360863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of capsaicin-sensitive primary afferents in differential rat models of inflammatory pain: a systematic comparative study in conscious rats.
    Chen HS; He X; Wang Y; Wen WW; You HJ; Arendt-Nielsen L
    Exp Neurol; 2007 Mar; 204(1):244-51. PubMed ID: 17188267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced antinociceptive effects of morphine in histamine H2 receptor gene knockout mice.
    Mobarakeh JI; Takahashi K; Sakurada S; Kuramasu A; Yanai K
    Neuropharmacology; 2006 Sep; 51(3):612-22. PubMed ID: 16806305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced thermal avoidance in mice lacking the ATP receptor P2X3.
    Shimizu I; Iida T; Guan Y; Zhao C; Raja SN; Jarvis MF; Cockayne DA; Caterina MJ
    Pain; 2005 Jul; 116(1-2):96-108. PubMed ID: 15927378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of striatal dopamine D2/D3 receptor binding potential with pain but not tactile sensitivity or placebo analgesia.
    Martikainen IK; Hagelberg N; Mansikka H; Hietala J; Någren K; Scheinin H; Pertovaara A
    Neurosci Lett; 2005 Mar; 376(3):149-53. PubMed ID: 15721212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G protein-coupled receptor kinase 6 controls post-inflammatory visceral hyperalgesia.
    Eijkelkamp N; Heijnen CJ; Elsenbruch S; Holtmann G; Schedlowski M; Kavelaars A
    Brain Behav Immun; 2009 Jan; 23(1):18-26. PubMed ID: 18687398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced basal and ethanol stimulation of striatal extracellular dopamine concentrations in dopamine D2 receptor knockout mice.
    Job MO; Ramachandra V; Anders S; Low MJ; Gonzales RA
    Synapse; 2006 Aug; 60(2):158-64. PubMed ID: 16715495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of transient receptor potential vanilloid subfamily 1 to endothelin-1-induced thermal hyperalgesia.
    Kawamata T; Ji W; Yamamoto J; Niiyama Y; Furuse S; Namiki A
    Neuroscience; 2008 Jun; 154(3):1067-76. PubMed ID: 18495351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of vanilloid receptors in thermal hyperalgesia induced by intraplantar endothelin-1 administration].
    Ji WJ; Liang JX; Zhao GD
    Nan Fang Yi Ke Da Xue Xue Bao; 2007 Jan; 27(1):101-3, 106. PubMed ID: 17259160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ketamine on acute somatic nociception in wild-type and N-methyl-D-aspartate (NMDA) receptor epsilon1 subunit knockout mice.
    Petrenko AB; Yamakura T; Askalany AR; Kohno T; Sakimura K; Baba H
    Neuropharmacology; 2006 May; 50(6):741-7. PubMed ID: 16427663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased hyperalgesia after tissue injury and faster recovery of allodynia after nerve injury in the GalR1 knockout mice.
    Malkmus S; Lu X; Bartfai T; Yaksh TL; Hua XY
    Neuropeptides; 2005 Jun; 39(3):217-21. PubMed ID: 15944015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.