These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efficiency of different shear devices on flocculation. Serra T; Colomer J; Logan BE Water Res; 2008 Feb; 42(4-5):1113-21. PubMed ID: 17889250 [TBL] [Abstract][Full Text] [Related]
3. Floc morphology and size distributions of cohesive sediment in steady-state flow. Stone M; Krishnappan BG Water Res; 2003 Jun; 37(11):2739-47. PubMed ID: 12753852 [TBL] [Abstract][Full Text] [Related]
4. Shear-Induced Flocculation of Colloidal Particles in Stirred Tanks. Chin CJ; Yiacoumi S; Tsouris C J Colloid Interface Sci; 1998 Oct; 206(2):532-545. PubMed ID: 9756666 [TBL] [Abstract][Full Text] [Related]
5. Floc cohesive force in reversible aggregation: a Couette laminar flow investigation. Frappier G; Lartiges BS; Skali-Lami S Langmuir; 2010 Jul; 26(13):10475-88. PubMed ID: 20515055 [TBL] [Abstract][Full Text] [Related]
6. The effect of bed age and shear stress on the particle morphology of eroded cohesive river sediment in an annular flume. Stone M; Krishnappan BG; Emelko MB Water Res; 2008 Sep; 42(15):4179-87. PubMed ID: 18722638 [TBL] [Abstract][Full Text] [Related]
7. Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration. Mietta F; Chassagne C; Winterwerp JC J Colloid Interface Sci; 2009 Aug; 336(1):134-41. PubMed ID: 19423126 [TBL] [Abstract][Full Text] [Related]
8. Dependence of aggregate strength, structure, and light scattering properties on primary particle size under turbulent conditions in stirred tank. Ehrl L; Soos M; Morbidelli M Langmuir; 2008 Apr; 24(7):3070-81. PubMed ID: 18302430 [TBL] [Abstract][Full Text] [Related]
9. Characteristic analysis on temporal evolution of floc size and structure in low-shear flow. He W; Nan J; Li H; Li S Water Res; 2012 Feb; 46(2):509-20. PubMed ID: 22137291 [TBL] [Abstract][Full Text] [Related]
10. Fragmentation and erosion of two-dimensional aggregates in shear flow. Vassileva ND; van den Ende D; Mugele F; Mellema J Langmuir; 2007 Feb; 23(5):2352-61. PubMed ID: 17309199 [TBL] [Abstract][Full Text] [Related]
11. Effect of shear on concentrated hydrous ferric floc rheology. McMinn WA; Keown J; Allen SJ; Burnett MG Water Res; 2004 Apr; 38(7):1873-83. PubMed ID: 15026242 [TBL] [Abstract][Full Text] [Related]
12. Evidence of Shear Rate Dependence on Restructuring and Breakup of Latex Aggregates. Selomulya C; Amal R; Bushell G; Waite TD J Colloid Interface Sci; 2001 Apr; 236(1):67-77. PubMed ID: 11254330 [TBL] [Abstract][Full Text] [Related]
13. Structure of the Aggregates During the Process of Aggregation and Breakup Under a Shear Flow. Serra T; Casamitjana X J Colloid Interface Sci; 1998 Oct; 206(2):505-511. PubMed ID: 9756662 [TBL] [Abstract][Full Text] [Related]
16. The duplicity of floc strength. Jarvis P; Jefferson B; Parsons S Water Sci Technol; 2004; 50(12):63-70. PubMed ID: 15686004 [TBL] [Abstract][Full Text] [Related]
17. Rheological properties of deionized Chinese ink. Kimura H; Nakayama Y; Tsuchida A; Okubo T Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):236-40. PubMed ID: 17254756 [TBL] [Abstract][Full Text] [Related]
18. The Rheology of Bimodal Mixtures of Colloidal Particles with Long-Range, Soft Repulsions. Hunt WJ; Zukoski CF J Colloid Interface Sci; 1999 Feb; 210(2):343-351. PubMed ID: 9929421 [TBL] [Abstract][Full Text] [Related]