These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15996809)

  • 1. Dynamical behavior of lipid bilayer membranes for taste substances under random membrane-potential fluctuations.
    Yoshimoto M; Nishikanbara M; Nomoto M; Kurosawa S
    Biophys Chem; 2005 Oct; 118(1):1-6. PubMed ID: 15996809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrophobic and electrostatic effect of basic polyamino acid-DNA polyion complex on artificial bilayer lipid membrane.
    Amao Y; Kumazawa N
    Nucleic Acids Symp Ser; 1993; (29):149-51. PubMed ID: 8247746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Conductivity fluctuation of lipid bilayer membranes formed on a substrate].
    Pasechnik VI; Ivanov SA; Hianik T; Snejdarkova M; Sivak B
    Biofizika; 1998; 43(1):61-8. PubMed ID: 9567179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the electric response of lipid bilayers to bitter substances.
    Naito M; Sasaki N; Kambara T
    Biophys J; 1993 Sep; 65(3):1219-30. PubMed ID: 8241402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of lipid membranes of taste sensor to astringent and pungent substances.
    Iiyama S; Toko K; Matsuno T; Yamafuji K
    Chem Senses; 1994 Feb; 19(1):87-96. PubMed ID: 8055261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Current fluctuations across the bilayer membrane in the presence of prostaglandin F2 alpha].
    Korolev NP; Ivanov II; Il'iushenok AS; Mil'gram VD; Fedorov GE
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1987; (1):26-9. PubMed ID: 3470052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model for the dynamic responses of taste receptor cells to salty stimuli. I. Function of lipid bilayer membranes.
    Naito M; Fuchikami N; Sasaki N; Kambara T
    Biophys J; 1991 Jun; 59(6):1218-34. PubMed ID: 1873461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal quantum dots initiating current bursts in lipid bilayers.
    Ramachandran S; Merrill NE; Blick RH; van der Weide DW
    Biosens Bioelectron; 2005 Apr; 20(10):2173-6. PubMed ID: 15741094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling ion transport in tethered bilayer lipid membranes. 1. Passive ion permeation.
    Robertson JW; Friedrich MG; Kibrom A; Knoll W; Naumann RL; Walz D
    J Phys Chem B; 2008 Aug; 112(34):10475-82. PubMed ID: 18680332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulating tethered bilayer lipid membranes to study membrane proteins.
    Köper I
    Mol Biosyst; 2007 Oct; 3(10):651-7. PubMed ID: 17882328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study.
    Chang R; Violi A
    J Phys Chem B; 2006 Mar; 110(10):5073-83. PubMed ID: 16526750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer.
    Becucci L; Moncelli MR; Naumann R; Guidelli R
    J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling membranes under a transmembrane potential.
    Delemotte L; Dehez F; Treptow W; Tarek M
    J Phys Chem B; 2008 May; 112(18):5547-50. PubMed ID: 18412411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of single ion channel activity on a chip using tethered bilayer membranes.
    Andersson M; Keizer HM; Zhu C; Fine D; Dodabalapur A; Duran RS
    Langmuir; 2007 Mar; 23(6):2924-7. PubMed ID: 17286424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers.
    Castro-Román F; Benz RW; White SH; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(47):24157-64. PubMed ID: 17125387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical manipulation of supported lipid membranes by embedded electrodes.
    Jackson BL; Nye JA; Groves JT
    Langmuir; 2008 Jun; 24(12):6189-93. PubMed ID: 18491927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical investigation of melittin reconstituted into a mercury-supported lipid bilayer.
    Becucci L; León RR; Moncelli MR; Rovero P; Guidelli R
    Langmuir; 2006 Jul; 22(15):6644-50. PubMed ID: 16831008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin.
    Gurtovenko AA; Vattulainen I
    J Am Chem Soc; 2007 May; 129(17):5358-9. PubMed ID: 17417854
    [No Abstract]   [Full Text] [Related]  

  • 19. [On measurements of higher harmonics of transmembrane current].
    Anosov AA; Barabanenkov IuN; Orlov IuN; Sharakshané AS
    Biofizika; 2006; 51(2):278-81. PubMed ID: 16637333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface potential determination in planar lipid bilayers: a simplification of the conductance-ratio method.
    Abdulkader F; Arcisio-Miranda M; Curi R; Procopio J
    J Biochem Biophys Methods; 2007 Apr; 70(3):515-8. PubMed ID: 17303247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.