These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15996868)

  • 1. Ironing out the problem: new mechanisms of iron homeostasis.
    Massé E; Arguin M
    Trends Biochem Sci; 2005 Aug; 30(8):462-8. PubMed ID: 15996868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic regulation of fluxes: iron homeostasis of Escherichia coli.
    Semsey S; Andersson AM; Krishna S; Jensen MH; Massé E; Sneppen K
    Nucleic Acids Res; 2006; 34(17):4960-7. PubMed ID: 16982641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins.
    Barras F; Loiseau L; Py B
    Adv Microb Physiol; 2005; 50():41-101. PubMed ID: 16221578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron homeostasis in the fission yeast Schizosaccharomyces pombe.
    Labbé S; Pelletier B; Mercier A
    Biometals; 2007 Jun; 20(3-4):523-37. PubMed ID: 17211681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron and siderophores in fungal-host interactions.
    Johnson L
    Mycol Res; 2008 Feb; 112(Pt 2):170-83. PubMed ID: 18280720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ironing out disease: inherited disorders of iron homeostasis.
    Anderson GJ
    IUBMB Life; 2001 Jan; 51(1):11-7. PubMed ID: 11419690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple RNA surveillance pathways limit aberrant expression of iron uptake mRNAs and prevent iron toxicity in S. cerevisiae.
    Lee A; Henras AK; Chanfreau G
    Mol Cell; 2005 Jul; 19(1):39-51. PubMed ID: 15989963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis.
    Yuan Y; Wu H; Wang N; Li J; Zhao W; Du J; Wang D; Ling HQ
    Cell Res; 2008 Mar; 18(3):385-97. PubMed ID: 18268542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulating iron storage and metabolism with RNA: an overview of posttranscriptional controls of intracellular iron homeostasis.
    Salvail H; Massé E
    Wiley Interdiscip Rev RNA; 2012; 3(1):26-36. PubMed ID: 21793218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-transcriptional regulation of gene expression in response to iron deficiency: co-ordinated metabolic reprogramming by yeast mRNA-binding proteins.
    Vergara SV; Thiele DJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1088-90. PubMed ID: 18793194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the small RNA RyhB on growth, physiology and heterologous protein expression in Escherichia coli.
    Bollinger CJ; Kallio PT
    FEMS Microbiol Lett; 2007 Oct; 275(2):221-8. PubMed ID: 17784860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Downregulation of Tsx and OmpW and upregulation of OmpX are required for iron homeostasis in Escherichia coli.
    Lin XM; Wu LN; Li H; Wang SY; Peng XX
    J Proteome Res; 2008 Mar; 7(3):1235-43. PubMed ID: 18220334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis.
    Sheftel AD; Lill R
    Ann Med; 2009; 41(2):82-99. PubMed ID: 18720092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells.
    Chen H; Davidson T; Singleton S; Garrick MD; Costa M
    Toxicol Appl Pharmacol; 2005 Aug; 206(3):275-87. PubMed ID: 16039939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: the ferritin story.
    Theil EC
    Biometals; 2007 Jun; 20(3-4):513-21. PubMed ID: 17211680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The protein degradation system involved in the regulation of iron metabolism].
    Iwai K
    Gan To Kagaku Ryoho; 2008 Jan; 35(1):16-20. PubMed ID: 18195524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proteomic approach to iron and copper homeostasis in cyanobacteria.
    De la Cerda B; Castielli O; Durán RV; Navarro JA; Hervás M; De la Rosa MA
    Brief Funct Genomic Proteomic; 2007 Dec; 6(4):322-9. PubMed ID: 18192321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron transport in Escherichia coli: all has not been said and done.
    Grass G
    Biometals; 2006 Apr; 19(2):159-72. PubMed ID: 16718601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood iron homeostasis: newly discovered proteins and iron imbalance.
    Bleackley MR; Wong AY; Hudson DM; Wu CH; Macgillivray RT
    Transfus Med Rev; 2009 Apr; 23(2):103-23. PubMed ID: 19304112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.