These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 15996894)

  • 1. The complex interplay between mosquito positive and negative regulators of Plasmodium development.
    Vlachou D; Kafatos FC
    Curr Opin Microbiol; 2005 Aug; 8(4):415-21. PubMed ID: 15996894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosquito midguts and malaria: cell biology, compartmentalization and immunology.
    Whitten MM; Shiao SH; Levashina EA
    Parasite Immunol; 2006 Apr; 28(4):121-30. PubMed ID: 16542314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi.
    Dixit R; Sharma A; Mourya DT; Kamaraju R; Patole MS; Shouche YS
    Int J Infect Dis; 2009 Sep; 13(5):636-46. PubMed ID: 19128996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of proteins in the midgut of Anopheles albimanus infected with Plasmodium berghei.
    Serrano-Pinto V; Acosta-Pérez M; Luviano-Bazán D; Hurtado-Sil G; Batista CV; Martínez-Barnetche J; Lánz-Mendoza H
    Insect Biochem Mol Biol; 2010 Oct; 40(10):752-8. PubMed ID: 20692341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression and altered nucleocytoplasmic distribution of Anopheles ovalbumin-like SRPN10 serpins in Plasmodium-infected midgut cells.
    Danielli A; Barillas-Mury C; Kumar S; Kafatos FC; Loukeris TG
    Cell Microbiol; 2005 Feb; 7(2):181-90. PubMed ID: 15659062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTRP is essential for mosquito infection by malaria ookinetes.
    Dessens JT; Beetsma AL; Dimopoulos G; Wengelnik K; Crisanti A; Kafatos FC; Sinden RE
    EMBO J; 1999 Nov; 18(22):6221-7. PubMed ID: 10562534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes.
    Jacobs-Lorena M
    J Vector Borne Dis; 2003; 40(3-4):73-7. PubMed ID: 15119075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between host complement and mosquito-midgut-stage Plasmodium berghei.
    Margos G; Navarette S; Butcher G; Davies A; Willers C; Sinden RE; Lachmann PJ
    Infect Immun; 2001 Aug; 69(8):5064-71. PubMed ID: 11447187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.
    Yoshida S; Shimada Y; Kondoh D; Kouzuma Y; Ghosh AK; Jacobs-Lorena M; Sinden RE
    PLoS Pathog; 2007 Dec; 3(12):e192. PubMed ID: 18159942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.
    Dimopoulos G; Seeley D; Wolf A; Kafatos FC
    EMBO J; 1998 Nov; 17(21):6115-23. PubMed ID: 9799221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malaria parasites in mosquitoes: laboratory models, evolutionary temptation and the real world.
    Boëte C
    Trends Parasitol; 2005 Oct; 21(10):445-7. PubMed ID: 16099724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector.
    Vernick KD; Fujioka H; Aikawa M
    Exp Parasitol; 1999 Apr; 91(4):362-6. PubMed ID: 10092481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions.
    Xu X; Dong Y; Abraham EG; Kocan A; Srinivasan P; Ghosh AK; Sinden RE; Ribeiro JM; Jacobs-Lorena M; Kafatos FC; Dimopoulos G
    Mol Biochem Parasitol; 2005 Jul; 142(1):76-87. PubMed ID: 15907562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion.
    Vlachou D; Schlegelmilch T; Christophides GK; Kafatos FC
    Curr Biol; 2005 Jul; 15(13):1185-95. PubMed ID: 16005290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes.
    Frischknecht F; Baldacci P; Martin B; Zimmer C; Thiberge S; Olivo-Marin JC; Shorte SL; Ménard R
    Cell Microbiol; 2004 Jul; 6(7):687-94. PubMed ID: 15186404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei.
    Raibaud A; Brahimi K; Roth CW; Brey PT; Faust DM
    Mol Biochem Parasitol; 2006 Nov; 150(1):107-13. PubMed ID: 16908078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse genetics analysis of antiparasitic responses in the malaria vector, Anopheles gambiae.
    Blandin SA; Levashina EA
    Methods Mol Biol; 2008; 415():365-77. PubMed ID: 18370165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malaria parasite development in mosquitoes.
    Beier JC
    Annu Rev Entomol; 1998; 43():519-43. PubMed ID: 9444756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosquito immunity against Plasmodium.
    Michel K; Kafatos FC
    Insect Biochem Mol Biol; 2005 Jul; 35(7):677-89. PubMed ID: 15894185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.