BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15996933)

  • 1. Targeting mutated protein tyrosine kinases and their signaling pathways in hematologic malignancies.
    Chalandon Y; Schwaller J
    Haematologica; 2005 Jul; 90(7):949-68. PubMed ID: 15996933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML).
    Walz C; Sattler M
    Crit Rev Oncol Hematol; 2006 Feb; 57(2):145-64. PubMed ID: 16213151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal transduction therapy in haematological malignancies: identification and targeting of tyrosine kinases.
    Chase A; Cross NC
    Clin Sci (Lond); 2006 Oct; 111(4):233-49. PubMed ID: 16961463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of BCR-ABL mutated clones prior to hematologic or cytogenetic resistance to imatinib.
    Ernst T; Erben P; Müller MC; Paschka P; Schenk T; Hoffmann J; Kreil S; La Rosée P; Hehlmann R; Hochhaus A
    Haematologica; 2008 Feb; 93(2):186-92. PubMed ID: 18223278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular genetics of human leukemias: new insights into therapy.
    Gilliland DG
    Semin Hematol; 2002 Oct; 39(4 Suppl 3):6-11. PubMed ID: 12447846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roots of imatinib resistance: a question of self-renewal?
    Burchert A
    Drug Resist Updat; 2007; 10(4-5):152-61. PubMed ID: 17683977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Abl tyrosine kinase enhances nerve growth factor-mediated signaling in Bcr-Abl transformed cells via the alteration of signaling complex and the receptor turnover.
    Koch A; Scherr M; Breyer B; Mancini A; Kardinal C; Battmer K; Eder M; Tamura T
    Oncogene; 2008 Aug; 27(34):4678-89. PubMed ID: 18427551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia.
    Soverini S; Colarossi S; Gnani A; Rosti G; Castagnetti F; Poerio A; Iacobucci I; Amabile M; Abruzzese E; Orlandi E; Radaelli F; Ciccone F; Tiribelli M; di Lorenzo R; Caracciolo C; Izzo B; Pane F; Saglio G; Baccarani M; Martinelli G;
    Clin Cancer Res; 2006 Dec; 12(24):7374-9. PubMed ID: 17189410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Important therapeutic targets in chronic myelogenous leukemia.
    Kantarjian HM; Giles F; Quintás-Cardama A; Cortes J
    Clin Cancer Res; 2007 Feb; 13(4):1089-97. PubMed ID: 17317816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chronic myeloid leukemia--resistance to imatinib mesylate (Glivec)--literature review and personal experience].
    Nausová J; Priwitzerová M; Jarosová M; Indrák K; Faber E; Divoký V
    Cas Lek Cesk; 2006; 145(5):377-82. PubMed ID: 16755775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing the treatment of hematologic malignancies through the development of targeted interventions.
    Tallman MS
    Semin Hematol; 2002 Oct; 39(4 Suppl 3):1-5. PubMed ID: 12447845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance to targeted therapy in chronic myelogenous leukemia.
    Hochhaus A; Erben P; Ernst T; Mueller MC
    Semin Hematol; 2007 Jan; 44(1 Suppl 1):S15-24. PubMed ID: 17292737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression analysis of BCR/ABL1-dependent transcriptional response reveals enrichment for genes involved in negative feedback regulation.
    Håkansson P; Nilsson B; Andersson A; Lassen C; Gullberg U; Fioretos T
    Genes Chromosomes Cancer; 2008 Apr; 47(4):267-75. PubMed ID: 18181176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted therapy in chronic myeloid leukemia.
    Jabbour E; Cortes JE; Ghanem H; O'Brien S; Kantarjian HM
    Expert Rev Anticancer Ther; 2008 Jan; 8(1):99-110. PubMed ID: 18095887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biology of chronic myelogenous leukemia: implications for imatinib therapy.
    Alvarez RH; Kantarjian H; Cortes JE
    Semin Hematol; 2007 Jan; 44(1 Suppl 1):S4-14. PubMed ID: 17292736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute monocytic leukemia with coexpression of minor BCR-ABL1 and PICALM-MLLT10 fusion genes along with overexpression of HOXA9.
    Sindt A; Deau B; Brahim W; Staal A; Visanica S; Villarese P; Rault JP; Macintyre E; Delabesse E
    Genes Chromosomes Cancer; 2006 Jun; 45(6):575-82. PubMed ID: 16518848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rottlerin synergistically enhances imatinib-induced apoptosis of BCR/ABL-expressing cells through its mitochondrial uncoupling effect independent of protein kinase C-delta.
    Kurosu T; Tsuji K; Kida A; Koyama T; Yamamoto M; Miura O
    Oncogene; 2007 May; 26(21):2975-87. PubMed ID: 17130834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BCR-ABL in chronic myelogenous leukemia--how does it work?
    Goldman JM; Melo JV
    Acta Haematol; 2008; 119(4):212-7. PubMed ID: 18566539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Abnormal activation of tyrosine kinases and its role in the pathogenesis of hematological malignancies - review].
    Sun XM
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2007 Jun; 15(3):657-61. PubMed ID: 17605888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitogen-activated protein kinase signaling module as a therapeutic target in hematologic malignancies.
    Milella M; Kornblau SM; Andreeff M
    Rev Clin Exp Hematol; 2003 Jun; 7(2):160-90. PubMed ID: 14763161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.