These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Development of leaf photosynthetic parameters in Betula pendula Roth leaves: correlations with photosystem I density. Eichelmann H; Oja V; Rasulov B; Padu E; Bichele I; Pettai H; Niinemets U; Laisk A Plant Biol (Stuttg); 2004 May; 6(3):307-18. PubMed ID: 15143439 [TBL] [Abstract][Full Text] [Related]
4. Decreased anthocyanidin reductase expression strongly decreases silver birch (Betula pendula) growth and alters accumulation of phenolics. Kosonen M; Lännenpää M; Ratilainen M; Kontunen-Soppela S; Julkunen-Tiitto R Physiol Plant; 2015 Dec; 155(4):384-99. PubMed ID: 25611902 [TBL] [Abstract][Full Text] [Related]
5. Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. Prins A; van Heerden PD; Olmos E; Kunert KJ; Foyer CH J Exp Bot; 2008; 59(7):1935-50. PubMed ID: 18503045 [TBL] [Abstract][Full Text] [Related]
6. Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Riikonen J; Holopainen T; Oksanen E; Vapaavuori E Tree Physiol; 2005 May; 25(5):621-32. PubMed ID: 15741148 [TBL] [Abstract][Full Text] [Related]
7. Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone. Kontunen-Soppela S; Riikonen J; Ruhanen H; Brosché M; Somervuo P; Peltonen P; Kangasjärvi J; Auvinen P; Paulin L; Keinänen M; Oksanen E; Vapaavuori E Plant Cell Environ; 2010 Jun; 33(6):1016-28. PubMed ID: 20132521 [TBL] [Abstract][Full Text] [Related]
8. Endogenous hormones and expression of senescence-related genes in different senescent types of maize. He P; Osaki M; Takebe M; Shinano T; Wasaki J J Exp Bot; 2005 Apr; 56(414):1117-28. PubMed ID: 15723826 [TBL] [Abstract][Full Text] [Related]
9. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Suzuki Y; Miyamoto T; Yoshizawa R; Mae T; Makino A Plant Cell Environ; 2009 Apr; 32(4):417-27. PubMed ID: 19183297 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Zhao D; Derkx AP; Liu DC; Buchner P; Hawkesford MJ Plant Biol (Stuttg); 2015 Jul; 17(4):904-13. PubMed ID: 25545326 [TBL] [Abstract][Full Text] [Related]
11. Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Tiimonen H; Aronen T; Laakso T; Saranpää P; Chiang V; Ylioja T; Roininen H; Häggman H Planta; 2005 Nov; 222(4):699-708. PubMed ID: 15971066 [TBL] [Abstract][Full Text] [Related]
12. Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Hoenicka H; Nowitzki O; Hanelt D; Fladung M Planta; 2008 Apr; 227(5):1001-11. PubMed ID: 18185941 [TBL] [Abstract][Full Text] [Related]
13. Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. Suzuki Y; Makino A J Exp Bot; 2013 Feb; 64(4):1145-52. PubMed ID: 23349140 [TBL] [Abstract][Full Text] [Related]
14. Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Wittmann C; Matyssek R; Pfanz H; Humar M Environ Pollut; 2007 Nov; 150(2):258-66. PubMed ID: 17374426 [TBL] [Abstract][Full Text] [Related]
15. RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Izumi M; Tsunoda H; Suzuki Y; Makino A; Ishida H J Exp Bot; 2012 Mar; 63(5):2159-70. PubMed ID: 22223809 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing rubisco content in rice leaves. Fukayama H; Ueguchi C; Nishikawa K; Katoh N; Ishikawa C; Masumoto C; Hatanaka T; Misoo S Plant Cell Physiol; 2012 Jun; 53(6):976-86. PubMed ID: 22470057 [TBL] [Abstract][Full Text] [Related]
17. Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability. Kitao M; Yazaki K; Kitaoka S; Fukatsu E; Tobita H; Komatsu M; Maruyama Y; Koike T Physiol Plant; 2015 Dec; 155(4):435-45. PubMed ID: 25690946 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of Liu C; Xu H; Han R; Wang S; Liu G; Chen S; Chen J; Bian X; Jiang J Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31548512 [TBL] [Abstract][Full Text] [Related]
19. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Yamori W; Masumoto C; Fukayama H; Makino A Plant J; 2012 Sep; 71(6):871-80. PubMed ID: 22563799 [TBL] [Abstract][Full Text] [Related]
20. Availability of Rubisco small subunit up-regulates the transcript levels of large subunit for stoichiometric assembly of its holoenzyme in rice. Suzuki Y; Makino A Plant Physiol; 2012 Sep; 160(1):533-40. PubMed ID: 22811433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]