BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15996983)

  • 1. In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality.
    Terskikh VV; Feurtado JA; Borchardt S; Giblin M; Abrams SR; Kermode AR
    J Exp Bot; 2005 Aug; 56(418):2253-65. PubMed ID: 15996983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo nuclear magnetic resonance metabolite profiling in plant seeds.
    Terskikh V; Kermode AR
    Methods Mol Biol; 2011; 773():307-18. PubMed ID: 21898262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [1H, 13C 15N and 31P NMR spectroscopy of plant seeds: possible applications].
    Ratković S
    Glas Srp Akad Nauka Med; 1992; (42):157-70. PubMed ID: 1340482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterioration of western redcedar (Thuja plicata Donn ex D. Don) seeds: protein oxidation and in vivo NMR monitoring of storage oils.
    Terskikh VV; Zeng Y; Feurtado JA; Giblin M; Abrams SR; Kermode AR
    J Exp Bot; 2008; 59(4):765-77. PubMed ID: 18349051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput, non-destructive determination of oil content in intact seeds by continuous wave-free precession NMR.
    Colnago LA; Engelsberg M; Souza AA; Barbosa LL
    Anal Chem; 2007 Feb; 79(3):1271-4. PubMed ID: 17263365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid profiling of developing Jatropha curcas L. seeds using (1)H NMR spectroscopy.
    Annarao S; Sidhu OP; Roy R; Tuli R; Khetrapal CL
    Bioresour Technol; 2008 Dec; 99(18):9032-5. PubMed ID: 18534845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas.
    Yang MF; Liu YJ; Liu Y; Chen H; Chen F; Shen SH
    J Proteome Res; 2009 Mar; 8(3):1441-51. PubMed ID: 19152324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free amino acid profiles suggest a possible role for asparagine in the control of storage-product accumulation in developing seeds of low- and high-protein soybean lines.
    Hernández-Sebastià C; Marsolais F; Saravitz C; Israel D; Dewey RE; Huber SC
    J Exp Bot; 2005 Jul; 56(417):1951-63. PubMed ID: 15911557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative imaging of oil storage in developing crop seeds.
    Neuberger T; Sreenivasulu N; Rokitta M; Rolletschek H; Göbel C; Rutten T; Radchuk V; Feussner I; Wobus U; Jakob P; Webb A; Borisjuk L
    Plant Biotechnol J; 2008 Jan; 6(1):31-45. PubMed ID: 17894785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eyeing emergence: modified treatments for terminating dormancy of conifer seeds.
    Feurtado JA; Kermode AR
    Methods Mol Biol; 2011; 773():53-64. PubMed ID: 21898249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid and automated low resolution NMR method to analyze oil quality in intact oilseeds.
    Prestes RA; Colnago LA; Forato LA; Vizzotto L; Novotny EH; Carrilho E
    Anal Chim Acta; 2007 Jul; 596(2):325-9. PubMed ID: 17631114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in water status and water distribution in maturing lupin seeds studied by MR imaging and NMR spectroscopy.
    Garnczarska M; Zalewski T; Kempka M
    J Exp Bot; 2007; 58(14):3961-9. PubMed ID: 18024994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo ¹H-NMR microimaging during seed imbibition, germination, and early growth.
    Terskikh V; Müller K; Kermode AR; Leubner-Metzger G
    Methods Mol Biol; 2011; 773():319-27. PubMed ID: 21898263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ectopic expression of phosphoenolpyruvate carboxylase in Vicia narbonensis seeds: effects of improved nutrient status on seed maturation and transcriptional regulatory networks.
    Radchuk R; Radchuk V; Götz KP; Weichert H; Richter A; Emery RJ; Weschke W; Weber H
    Plant J; 2007 Sep; 51(5):819-39. PubMed ID: 17692079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reserve accumulation in legume seeds.
    Gallardo K; Thompson R; Burstin J
    C R Biol; 2008 Oct; 331(10):755-62. PubMed ID: 18926489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Delta5-polyenoic fatty acids in triacylglycerols from conifer seed oils.
    Lísa M; Holcapek M; Rezanka T; Kabátová N
    J Chromatogr A; 2007 Mar; 1146(1):67-77. PubMed ID: 17307191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolic control of seed germination].
    Catusse J; Strub JM; Job C; Van Dorsselaer A; Job D
    J Soc Biol; 2008; 202(3):223-9. PubMed ID: 18980744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation.
    Li Y; Beisson F; Pollard M; Ohlrogge J
    Phytochemistry; 2006 May; 67(9):904-15. PubMed ID: 16600316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic ¹³C/¹ H NMR imaging uncovers sugar allocation in the living seed.
    Melkus G; Rolletschek H; Fuchs J; Radchuk V; Grafahrend-Belau E; Sreenivasulu N; Rutten T; Weier D; Heinzel N; Schreiber F; Altmann T; Jakob PM; Borisjuk L
    Plant Biotechnol J; 2011 Dec; 9(9):1022-37. PubMed ID: 21535356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AAP1 regulates import of amino acids into developing Arabidopsis embryos.
    Sanders A; Collier R; Trethewy A; Gould G; Sieker R; Tegeder M
    Plant J; 2009 Aug; 59(4):540-52. PubMed ID: 19392706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.