BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15997460)

  • 1. Hydrogen-bonding motifs in fullerene chemistry.
    Sánchez L; Martín N; Guldi DM
    Angew Chem Int Ed Engl; 2005 Aug; 44(34):5374-82. PubMed ID: 15997460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly directional fourfold hydrogen-bonding motif for supramolecular structures through self-assembly of fullerodendrimers.
    Hahn U; González JJ; Huerta E; Segura M; Eckert JF; Cardinali F; de Mendoza J; Nierengarten JF
    Chemistry; 2005 Nov; 11(22):6666-72. PubMed ID: 16130163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of supramolecular fullerene ribbons via hydrogen-bonding interactions and their impact on fullerene electronic interactions and charge carrier mobility.
    Chu CC; Raffy G; Ray D; Del Guerzo A; Kauffmann B; Wantz G; Hirsch L; Bassani DM
    J Am Chem Soc; 2010 Sep; 132(36):12717-23. PubMed ID: 20731396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Through-bond photoinduced electron transfer in a porphyrin-fullerene conjugate held by a Hamilton type hydrogen bonding motif.
    D'Souza F; Venukadasula GM; Yamanaka K; Subbaiyan NK; Zandler ME; Ito O
    Org Biomol Chem; 2009 Mar; 7(6):1076-80. PubMed ID: 19262925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pairing fullerenes and porphyrins: supramolecular wires that exhibit charge transfer activity.
    Wessendorf F; Grimm B; Guldi DM; Hirsch A
    J Am Chem Soc; 2010 Aug; 132(31):10786-95. PubMed ID: 20681711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong stacking between FH--N hydrogen-bonded foldamers and fullerenes: formation of supramolecular nano networks.
    Li C; Zhu YY; Yi HP; Li CZ; Jiang XK; Li ZT; Yu YH
    Chemistry; 2007; 13(35):9990-8. PubMed ID: 17886850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular control of oligothienylenevinylene-fullerene interactions: evidence for a ground-state EDA complex.
    McClenaghan ND; Grote Z; Darriet K; Zimine M; Williams RM; De Cola L; Bassani DM
    Org Lett; 2005 Mar; 7(5):807-10. PubMed ID: 15727446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable one-, two-, and three-dimensional self-assemblies from an acceptor-donor fullerene-N,N-dimethylaminoazobenzene dyad: interfacial geometry and temporal evolution.
    Kumar KS; Patnaik A
    Langmuir; 2011 Sep; 27(17):11017-25. PubMed ID: 21766824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the supramolecular self-assembly of the fullerene derivative PCBM on gold surfaces.
    Wang Y; Alcamí M; Martín F
    Chemphyschem; 2008 May; 9(7):1030-5. PubMed ID: 18404763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular interactions of [60]- and [70]fullerenes with calix[n]arenes.
    Bhattacharya S; Nayak SK; Chattopadhyay S; Banerjee M; Mukherjee AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):321-9. PubMed ID: 15556456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional molecular carbon materials--from fullerenes to carbon nanotubes.
    Guldi DM; Rahman GM; Sgobba V; Ehli C
    Chem Soc Rev; 2006 May; 35(5):471-87. PubMed ID: 16636729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular [60]fullerene chemistry on surfaces.
    Bonifazi D; Enger O; Diederich F
    Chem Soc Rev; 2007 Feb; 36(2):390-414. PubMed ID: 17264939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular triad and pentad composed of zinc-porphyrin(s), oxoporphyrinogen, and fullerene(s): design and electron-transfer studies.
    Schumacher AL; Sandanayaka AS; Hill JP; Ariga K; Karr PA; Araki Y; Ito O; D'Souza F
    Chemistry; 2007; 13(16):4628-35. PubMed ID: 17385764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of supramolecular fullerene-porphyrin-Cu(phen)(2)-ferrocene architectures. A heteroleptic approach towards tetrads.
    Schmittel M; Kishore RS; Bats JW
    Org Biomol Chem; 2007 Jan; 5(1):78-86. PubMed ID: 17164910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in morphology control of supramolecular fullerene assemblies and its applications.
    Babu SS; Möhwald H; Nakanishi T
    Chem Soc Rev; 2010 Nov; 39(11):4021-35. PubMed ID: 20865187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen bonding interfaces in fullerene*TTF ensembles.
    Segura M; Sánchez L; de Mendoza J; Martín N; Guldi DM
    J Am Chem Soc; 2003 Dec; 125(49):15093-100. PubMed ID: 14653744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular assemblies of tripodal porphyrin hosts and C60.
    Tong LH; Wietor JL; Clegg W; Raithby PR; Pascu SI; Sanders JK
    Chemistry; 2008; 14(10):3035-44. PubMed ID: 18293350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of a new ligand for transition metal-fullerene supramolecular systems.
    Deye JR; Shiveley AN; Goins SM; Rizzo L; Oehrle SA; Walters KA
    Inorg Chem; 2008 Jan; 47(1):23-5. PubMed ID: 18062688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes.
    Nakanishi T
    Chem Commun (Camb); 2010 May; 46(20):3425-36. PubMed ID: 20458394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diameter dependent electron transfer in supramolecular nanohybrids of (6,5)- or (7,6)-enriched semiconducting SWCNT as donors and fullerene as acceptor.
    Sandanayaka AS; Maligaspe E; Hasobe T; Ito O; D'Souza F
    Chem Commun (Camb); 2010 Dec; 46(46):8749-51. PubMed ID: 20967352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.