BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 15998021)

  • 1. Density functional study on dihydrogen activation at the H cluster in Fe-only hydrogenases.
    Zhou T; Mo Y; Zhou Z; Tsai K
    Inorg Chem; 2005 Jul; 44(14):4941-6. PubMed ID: 15998021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers.
    Zhou T; Mo Y; Liu A; Zhou Z; Tsai KR
    Inorg Chem; 2004 Feb; 43(3):923-30. PubMed ID: 14753812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of HydA(DeltaEFG) requires a preformed [4Fe-4S] cluster.
    Mulder DW; Ortillo DO; Gardenghi DJ; Naumov AV; Ruebush SS; Szilagyi RK; Huynh B; Broderick JB; Peters JW
    Biochemistry; 2009 Jul; 48(26):6240-8. PubMed ID: 19435321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts.
    Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A
    J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: a Q-band 57Fe-ENDOR and HYSCORE study.
    Silakov A; Reijerse EJ; Albracht SP; Hatchikian EC; Lubitz W
    J Am Chem Soc; 2007 Sep; 129(37):11447-58. PubMed ID: 17722921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii.
    Mulder DW; Ratzloff MW; Shepard EM; Byer AS; Noone SM; Peters JW; Broderick JB; King PW
    J Am Chem Soc; 2013 May; 135(18):6921-9. PubMed ID: 23578101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation/reduction dynamics at the [4Fe-4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases.
    Senger M; Mebs S; Duan J; Shulenina O; Laun K; Kertess L; Wittkamp F; Apfel UP; Happe T; Winkler M; Haumann M; Stripp ST
    Phys Chem Chem Phys; 2018 Jan; 20(5):3128-3140. PubMed ID: 28884175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer.
    Yang X; Hall MB
    J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy.
    Stripp S; Sanganas O; Happe T; Haumann M
    Biochemistry; 2009 Jun; 48(22):5042-9. PubMed ID: 19397274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations.
    Löscher S; Schwartz L; Stein M; Ott S; Haumann M
    Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational studies of [NiFe] and [FeFe] hydrogenases.
    Siegbahn PE; Tye JW; Hall MB
    Chem Rev; 2007 Oct; 107(10):4414-35. PubMed ID: 17927160
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials.
    Surawatanawong P; Tye JW; Darensbourg MY; Hall MB
    Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refining the active site structure of iron-iron hydrogenase using computational infrared spectroscopy.
    Tye JW; Darensbourg MY; Hall MB
    Inorg Chem; 2008 Apr; 47(7):2380-8. PubMed ID: 18307282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster.
    Adamska-Venkatesh A; Krawietz D; Siebel J; Weber K; Happe T; Reijerse E; Lubitz W
    J Am Chem Soc; 2014 Aug; 136(32):11339-46. PubMed ID: 25025613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases.
    Greco C; Bruschi M; De Gioia L; Ryde U
    Inorg Chem; 2007 Jul; 46(15):5911-21. PubMed ID: 17602468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase.
    Mulder DW; Guo Y; Ratzloff MW; King PW
    J Am Chem Soc; 2017 Jan; 139(1):83-86. PubMed ID: 27973768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]-2Fe site.
    Czech I; Stripp S; Sanganas O; Leidel N; Happe T; Haumann M
    FEBS Lett; 2011 Jan; 585(1):225-30. PubMed ID: 21130763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wiring photosystem I for direct solar hydrogen production.
    Lubner CE; Grimme R; Bryant DA; Golbeck JH
    Biochemistry; 2010 Jan; 49(3):404-14. PubMed ID: 19947649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases.
    Sommer C; Adamska-Venkatesh A; Pawlak K; Birrell JA; Rüdiger O; Reijerse EJ; Lubitz W
    J Am Chem Soc; 2017 Feb; 139(4):1440-1443. PubMed ID: 28075576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.