These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 15998064)

  • 21. Fuzzy ternary particle systems by surface-initiated atom transfer radical polymerization from layer-by-layer colloidal core-shell macroinitiator particles.
    Fulghum TM; Patton DL; Advincula RC
    Langmuir; 2006 Sep; 22(20):8397-402. PubMed ID: 16981754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adhesion of spherical polyelectrolyte brushes on mica: an in situ AFM investigation.
    Gliemann H; Mei Y; Ballauff M; Schimmel T
    Langmuir; 2006 Aug; 22(17):7254-9. PubMed ID: 16893223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microsurface potential measurements: repulsive forces between polyelectrolyte brushes in the presence of multivalent counterions.
    Schneider C; Jusufi A; Farina R; Li F; Pincus P; Tirrell M; Ballauff M
    Langmuir; 2008 Oct; 24(19):10612-5. PubMed ID: 18781780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionizable polyelectrolyte brushes: brush height and electrosteric interaction.
    Biesheuvel PM
    J Colloid Interface Sci; 2004 Jul; 275(1):97-106. PubMed ID: 15158386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spherical polyelectrolyte brushes in the presence of multivalent counterions: the effect of fluctuations and correlations as determined by molecular dynamics simulations.
    Mei Y; Hoffmann M; Ballauff M; Jusufi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031805. PubMed ID: 18517412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collapse of spherical polyelectrolyte brushes in the presence of multivalent counterions.
    Mei Y; Lauterbach K; Hoffmann M; Borisov OV; Ballauff M; Jusufi A
    Phys Rev Lett; 2006 Oct; 97(15):158301. PubMed ID: 17155365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-organization of multivalent counterions in polyelectrolyte brushes.
    Jiang T; Wu J
    J Chem Phys; 2008 Aug; 129(8):084903. PubMed ID: 19044849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface potential of spherical polyelectrolyte brushes in the presence of trivalent counterions.
    Hoffmann M; Jusufi A; Schneider C; Ballauff M
    J Colloid Interface Sci; 2009 Oct; 338(2):566-72. PubMed ID: 19651414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry.
    Henzler K; Haupt B; Lauterbach K; Wittemann A; Borisov O; Ballauff M
    J Am Chem Soc; 2010 Mar; 132(9):3159-63. PubMed ID: 20143809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diblock polyampholytes grafted onto spherical particles: Monte Carlo simulation and lattice mean-field theory.
    Akinchina A; Shusharina NP; Linse P
    Langmuir; 2004 Nov; 20(23):10351-60. PubMed ID: 15518535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics simulation of discontinuous volume phase transitions in highly-charged crosslinked polyelectrolyte networks with explicit counterions in good solvent.
    Yin DW; Yan Q; de Pablo JJ
    J Chem Phys; 2005 Nov; 123(17):174909. PubMed ID: 16375571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of Spherical Polyelectrolyte Brushes by Thermo-controlled Emulsion Polymerization.
    Wang X; Xu J; Li L; Wu S; Chen Q; Lu Y; Ballauff M; Guo X
    Macromol Rapid Commun; 2010 Jul; 31(14):1272-5. PubMed ID: 21567523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic binding of oppositely charged surfactants to spherical polyelectrolyte brushes.
    Cao Q; Zuo C; Li L
    Phys Chem Chem Phys; 2011 May; 13(20):9706-15. PubMed ID: 21503300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrophoresis and dielectric dispersion of spherical polyelectrolyte brushes.
    Ahualli S; Ballauff M; Arroyo FJ; Delgado ÁV; Jiménez ML
    Langmuir; 2012 Nov; 28(47):16372-81. PubMed ID: 23110617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformation of poly(styrene sulfonate) layers physisorbed from high salt solution studied by force measurements on two different length scales.
    Block S; Helm CA
    J Phys Chem B; 2008 Aug; 112(31):9318-27. PubMed ID: 18620452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction forces between microsized silica particles and weak polyelectrolyte brushes at varying pH and salt concentration.
    Drechsler A; Synytska A; Uhlmann P; Elmahdy MM; Stamm M; Kremer F
    Langmuir; 2010 May; 26(9):6400-10. PubMed ID: 20038115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis.
    Carrillo JM; Dobrynin AV
    Langmuir; 2009 Nov; 25(22):13158-68. PubMed ID: 19899820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanostructure of the aqueous form of lung surfactant of different species visualized by cryo-transmission electron microscopy.
    Waisman D; Danino D; Weintraub Z; Schmidt J; Talmon Y
    Clin Physiol Funct Imaging; 2007 Nov; 27(6):375-80. PubMed ID: 17944660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of the electrostatic interaction between polyelectrolyte brush surfaces by optical tweezers.
    Murakami D; Takenaka A; Kobayashi M; Jinnai H; Takahara A
    Langmuir; 2013 Dec; 29(52):16093-7. PubMed ID: 24325298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct Synthesis of Poly(potassium 3-sulfopropyl methacrylate) Cylindrical Polymer Brushes via ATRP Using a Supramolecular Complex With Crown Ether.
    Xu Y; Walther A; Müller AH
    Macromol Rapid Commun; 2010 Aug; 31(16):1462-6. PubMed ID: 21567552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.