These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15998069)

  • 1. Nanoparticulate metal complexes prepared with compressed carbon dioxide: correlation of particle morphology with precursor structure.
    Johnson CA; Sharma S; Subramaniam B; Borovik AS
    J Am Chem Soc; 2005 Jul; 127(27):9698-9. PubMed ID: 15998069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of ruthenium/carbon aerogel nanocomposites via a supercritical fluid route.
    Zhang Y; Kang D; Aindow M; Erkey C
    J Phys Chem B; 2005 Feb; 109(7):2617-24. PubMed ID: 16851266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallic nanoparticle production utilizing a supercritical carbon dioxide flow process.
    McLeod MC; Gale WF; Roberts CB
    Langmuir; 2004 Aug; 20(17):7078-82. PubMed ID: 15301490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2.
    Moisan S; Martinez V; Weisbecker P; Cansell F; Mecking S; Aymonier C
    J Am Chem Soc; 2007 Aug; 129(34):10602-6. PubMed ID: 17685528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of metal-metal coupling at a considerable distance by using 4-pyridinealdazine as a bridging ligand in polynuclear complexes of rhenium and ruthenium.
    Cattaneo M; Fagalde F; Katz NE; Leiva AM; Schmehl R
    Inorg Chem; 2006 Jan; 45(1):127-36. PubMed ID: 16390048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Syntheses and electronic structures of one-electron-oxidized group 10 metal(II)-(disalicylidene)diamine complexes (metal = Ni, Pd, Pt).
    Shimazaki Y; Yajima T; Tani F; Karasawa S; Fukui K; Naruta Y; Yamauchi O
    J Am Chem Soc; 2007 Mar; 129(9):2559-68. PubMed ID: 17290991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide.
    Meric P; Yu KM; Tsang SC
    Langmuir; 2004 Sep; 20(20):8537-45. PubMed ID: 15379472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron and ruthenium nanoparticles in carbon prepared by thermolysis of buckymetallocenes.
    Nakae T; Matsuo Y; Takagi M; Sato Y; Suenaga K; Nakamura E
    Chem Asian J; 2009 Mar; 4(3):457-65. PubMed ID: 19137536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds.
    Anand M; Bell PW; Fan X; Enick RM; Roberts CB
    J Phys Chem B; 2006 Aug; 110(30):14693-701. PubMed ID: 16869575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films.
    McLeod MC; Kitchens CL; Roberts CB
    Langmuir; 2005 Mar; 21(6):2414-8. PubMed ID: 15752033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors.
    Ali HS; York P; Blagden N
    Int J Pharm; 2009 Jun; 375(1-2):107-13. PubMed ID: 19481696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2.
    Li J; Shi X; Wang L; Liu F
    J Colloid Interface Sci; 2007 Nov; 315(1):230-6. PubMed ID: 17689547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation.
    Pathak P; Prasad GL; Meziani MJ; Joudeh AA; Sun YP
    Langmuir; 2007 Feb; 23(5):2674-9. PubMed ID: 17243738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The preparation of liposomes using compressed carbon dioxide: strategies, important considerations and comparison with conventional techniques.
    Bridson RH; Santos RC; Al-Duri B; McAllister SM; Robertson J; Alpar HO
    J Pharm Pharmacol; 2006 Jun; 58(6):775-85. PubMed ID: 16734979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water.
    Shen YF; Tang J; Nie ZH; Wang YD; Ren Y; Zuo L
    Bioresour Technol; 2009 Sep; 100(18):4139-46. PubMed ID: 19414249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide-mediated process.
    Kadimi US; Balasubramanian DR; Ganni UR; Balaraman M; Govindarajulu V
    Nanomedicine; 2007 Dec; 3(4):273-80. PubMed ID: 17962084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.