BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 15998235)

  • 1. Macrophage adhesion on gelatin-based interpenetrating networks grafted with PEGylated RGD.
    Phillips JM; Kao WJ
    Tissue Eng; 2005; 11(5-6):964-73. PubMed ID: 15998235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpenetrating polymer networks containing gelatin modified with PEGylated RGD and soluble KGF: synthesis, characterization, and application in in vivo critical dermal wound.
    Waldeck H; Chung AS; Kao WJ
    J Biomed Mater Res A; 2007 Sep; 82(4):861-71. PubMed ID: 17335014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocytic U937 adhesion, tumor necrosis factor-alpha and interleukin-1 beta expression in response to gelatin-based networks grafted with arginine-glycine-aspartic acid and proline-histidine-serine-arginine-asparagine oligopeptides.
    Gao Q; Chung AS; Kao WJ
    Tissue Eng; 2007 Jan; 13(1):179-85. PubMed ID: 17518591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage matrix metalloproteinase-2/-9 gene and protein expression following adhesion to ECM-derived multifunctional matrices via integrin complexation.
    Chung A; Gao Q; Kao WJ
    Biomaterials; 2007 Jan; 28(2):285-98. PubMed ID: 16979234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell interaction with protein-loaded interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA; Stevens KR; Kao WJ
    Biomaterials; 2003 Oct; 24(22):3921-30. PubMed ID: 12834587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Either integrin subunit beta1 or beta3 is involved in mediating monocyte adhesion, IL-1beta protein and mRNA expression in response to surfaces functionalized with fibronectin-derived peptides.
    Chung AS; Gao Q; Kao WJ
    J Biomater Sci Polym Ed; 2007; 18(6):713-29. PubMed ID: 17623553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and physicochemical analysis of interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA; Martinez-Diaz GJ; Kao WJ
    J Biomed Mater Res A; 2003 Oct; 67(1):224-34. PubMed ID: 14517880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan.
    Ingavle GC; Gehrke SH; Detamore MS
    Biomaterials; 2014 Apr; 35(11):3558-70. PubMed ID: 24462353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular modification of p(AAm-co-EG/AA) IPNs supports osteoblast adhesion and phenotypic expression.
    Bearinger JP; Castner DG; Healy KE
    J Biomater Sci Polym Ed; 1998; 9(7):629-52. PubMed ID: 9686332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocyte activation in response to polyethylene glycol hydrogels grafted with RGD and PHSRN separated by interpositional spacers of various lengths.
    Schmidt DR; Kao WJ
    J Biomed Mater Res A; 2007 Dec; 83(3):617-25. PubMed ID: 17503491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblock copolymer.
    Deng C; Tian H; Zhang P; Sun J; Chen X; Jing X
    Biomacromolecules; 2006 Feb; 7(2):590-6. PubMed ID: 16471935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile creep properties of interpenetrating networks containing gelatin and poly(ethylene glycol) diacrylate.
    Toth M; Williams K; Hayes S; Kao WJ
    J Biomater Sci Polym Ed; 2005; 16(7):925-32. PubMed ID: 16128297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds.
    Daniele MA; Adams AA; Naciri J; North SH; Ligler FS
    Biomaterials; 2014 Feb; 35(6):1845-56. PubMed ID: 24314597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates.
    Li J; Kao WJ
    Biomacromolecules; 2003; 4(4):1055-67. PubMed ID: 12857092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue adhesiveness and host response of in situ photopolymerizable interpenetrating networks containing methylprednisolone acetate.
    Zilinski JL; Kao WJ
    J Biomed Mater Res A; 2004 Feb; 68(2):392-400. PubMed ID: 14704982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization.
    Harbers GM; Healy KE
    J Biomed Mater Res A; 2005 Dec; 75(4):855-69. PubMed ID: 16121356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocyte/macrophage interactions with base and linear- and star-like PEG-modified PEG-poly(acrylic acid) co-polymers.
    Wagner VE; Bryers JD
    J Biomed Mater Res A; 2003 Jul; 66(1):62-78. PubMed ID: 12833432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains.
    Kao WJ; Lee D
    Biomaterials; 2001 Nov; 22(21):2901-9. PubMed ID: 11561896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human macrophage adhesion on fibronectin: the role of substratum and intracellular signalling kinases.
    Liu Y; Kao WJ
    Cell Signal; 2002 Feb; 14(2):145-52. PubMed ID: 11781139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.