These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15998252)

  • 1. Glutathione-associated regulation of plant growth and stress responses.
    Ogawa K
    Antioxid Redox Signal; 2005; 7(7-8):973-81. PubMed ID: 15998252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation.
    Rouhier N; Lemaire SD; Jacquot JP
    Annu Rev Plant Biol; 2008; 59():143-66. PubMed ID: 18444899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress.
    Bonifacio A; Martins MO; Ribeiro CW; Fontenele AV; Carvalho FE; Margis-Pinheiro M; Silveira JA
    Plant Cell Environ; 2011 Oct; 34(10):1705-22. PubMed ID: 21631533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid.
    Wang H; Feng T; Peng X; Yan M; Tang X
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1354-62. PubMed ID: 19375798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the ascorbate-glutathione cycle in chloroplasts under light/dark conditions.
    Valero E; Macià H; De la Fuente IM; Hernández JA; González-Sánchez MI; García-Carmona F
    BMC Syst Biol; 2016 Jan; 10():11. PubMed ID: 26797294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brassinosteroid-induced CO(2) assimilation is associated with increased stability of redox-sensitive photosynthetic enzymes in the chloroplasts in cucumber plants.
    Jiang YP; Cheng F; Zhou YH; Xia XJ; Mao WH; Shi K; Chen ZX; Yu JQ
    Biochem Biophys Res Commun; 2012 Sep; 426(3):390-4. PubMed ID: 22960180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione in plants: an integrated overview.
    Noctor G; Mhamdi A; Chaouch S; Han Y; Neukermans J; Marquez-Garcia B; Queval G; Foyer CH
    Plant Cell Environ; 2012 Feb; 35(2):454-84. PubMed ID: 21777251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The physiological roles and metabolism of ascorbate in chloroplasts.
    Tóth SZ; Schansker G; Garab G
    Physiol Plant; 2013 Jun; 148(2):161-75. PubMed ID: 23163968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation and function of ascorbate peroxidase isoenzymes.
    Shigeoka S; Ishikawa T; Tamoi M; Miyagawa Y; Takeda T; Yabuta Y; Yoshimura K
    J Exp Bot; 2002 May; 53(372):1305-19. PubMed ID: 11997377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.
    Gallorini M; Petzel C; Bolay C; Hiller KA; Cataldi A; Buchalla W; Krifka S; Schweikl H
    Biomaterials; 2015 Jul; 56():114-28. PubMed ID: 25934285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures of Dactylis glomerata L.
    Zagorchev L; Seal CE; Kranner I; Odjakova M
    Free Radic Res; 2012 May; 46(5):656-64. PubMed ID: 22348546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of glutathione on redox regulation by antioxidant proteins and apoptosis in macrophages exposed to 2-hydroxyethyl methacrylate (HEMA).
    Krifka S; Hiller KA; Spagnuolo G; Jewett A; Schmalz G; Schweikl H
    Biomaterials; 2012 Jul; 33(21):5177-86. PubMed ID: 22534037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking phosphorus availability with photo-oxidative stress in plants.
    Hernández I; Munné-Bosch S
    J Exp Bot; 2015 May; 66(10):2889-900. PubMed ID: 25740928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress.
    Sgobba A; Paradiso A; Dipierro S; De Gara L; de Pinto MC
    Physiol Plant; 2015 Jan; 153(1):68-78. PubMed ID: 24796393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel insight into the regulation of GSH biosynthesis in higher plants.
    Rausch T; Gromes R; Liedschulte V; Müller I; Bogs J; Galovic V; Wachter A
    Plant Biol (Stuttg); 2007 Sep; 9(5):565-72. PubMed ID: 17853356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology.
    Baier M; Dietz KJ
    J Exp Bot; 2005 Jun; 56(416):1449-62. PubMed ID: 15863449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher plant antioxidants and redox signaling under environmental stresses.
    Shao HB; Chu LY; Shao MA; Jaleel CA; Mi HM
    C R Biol; 2008 Jun; 331(6):433-41. PubMed ID: 18510996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox signaling and stress tolerance in plants: a focus on vitamin E.
    Miret JA; Munné-Bosch S
    Ann N Y Acad Sci; 2015 Mar; 1340():29-38. PubMed ID: 25586886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants.
    Mendoza-Cózatl D; Loza-Tavera H; Hernández-Navarro A; Moreno-Sánchez R
    FEMS Microbiol Rev; 2005 Sep; 29(4):653-71. PubMed ID: 16102596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.