These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15998530)

  • 21. Nutrient transport from livestock manure applied to pastureland using phosphorus-based management strategies.
    Soupir ML; Mostaghimi S; Yagow ER
    J Environ Qual; 2006; 35(4):1269-78. PubMed ID: 16825446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient diethyl ether-based soxhlet protocol to quantify faecal sterols from catchment waters.
    Shah VK; Dunstan H; Taylor W
    J Chromatogr A; 2006 Mar; 1108(1):111-5. PubMed ID: 16430911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wastewater treatment plants (WWTPs) as a source of sediment contamination by toxic organic pollutants and fecal sterols in a semi-enclosed bay in Korea.
    Moon HB; Yoon SP; Jung RH; Choi M
    Chemosphere; 2008 Oct; 73(6):880-9. PubMed ID: 18727999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus fertilizer and grazing management effects on phosphorus in runoff from dairy pastures.
    Dougherty WJ; Nicholls PJ; Milham PJ; Havilah EJ; Lawrie RA
    J Environ Qual; 2008; 37(2):417-28. PubMed ID: 18268305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment.
    McDowell RW; Wilcock RJ
    J Environ Qual; 2007; 36(2):540-8. PubMed ID: 17332258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparisons of water quality parameters from diverse catchments during dry periods and following rain events.
    Shah VG; Dunstan RH; Geary PM; Coombes P; Roberts TK; Rothkirch T
    Water Res; 2007 Aug; 41(16):3655-66. PubMed ID: 17428519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying avian sources of faecal contamination using sterol analysis.
    Devane ML; Wood D; Chappell A; Robson B; Webster-Brown J; Gilpin BJ
    Environ Monit Assess; 2015 Oct; 187(10):625. PubMed ID: 26370196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the source of faecal pollution in contaminated rivers.
    Glipin BJ; Gregor JE; Savill MG
    Water Sci Technol; 2002; 46(3):9-15. PubMed ID: 12227609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.
    Ramos MC; Quinton JN; Tyrrel SF
    J Environ Manage; 2006 Jan; 78(1):97-101. PubMed ID: 16111800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rangeland dynamics in southern Ethiopia: (1) botanical composition of grasses and soil characteristics in relation to land-use and distance from water in semi-arid Borana rangelands.
    Tefera S; Snyman HA; Smit GN
    J Environ Manage; 2007 Oct; 85(2):429-42. PubMed ID: 17129661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Steroid Biomarkers Revisited - Improved Source Identification of Faecal Remains in Archaeological Soil Material.
    Prost K; Birk JJ; Lehndorff E; Gerlach R; Amelung W
    PLoS One; 2017; 12(1):e0164882. PubMed ID: 28060808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fate of lincomycin in snowmelt runoff from manure-amended pasture.
    Kuchta SL; Cessna AJ
    Chemosphere; 2009 Jul; 76(4):439-46. PubMed ID: 19419747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of sterols, 5alpha- and 5beta-stanols in sewage sludge, manure and soils amended with these both potential fertilizers.
    Ibañez E; Borrós S; Comellas L
    Fresenius J Anal Chem; 2000 Jan; 366(1):102-5. PubMed ID: 11225804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land.
    Kay P; Blackwell PA; Boxall AB
    Chemosphere; 2005 May; 59(7):951-9. PubMed ID: 15823328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extreme variability of steroid profiles in cow feces and pig slurries at the regional scale: implications for the use of steroids to specify fecal pollution sources in waters.
    Derrien M; Jarde E; Gruau G; Pierson-Wickmann AC
    J Agric Food Chem; 2011 Jul; 59(13):7294-302. PubMed ID: 21604805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry.
    Medeiros PM; Simoneit BR
    J Chromatogr A; 2007 Feb; 1141(2):271-8. PubMed ID: 17207493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cadmium losses in overland flow from an agricultural soil.
    Gray CW; Monaghan RM; Orchiston T; Laurenson S; Cavanagh JA
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):24046-24053. PubMed ID: 28918458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simulation experiment on the effectiveness of tree and pasture filter strips to remove NO3-N in lateral soil water flow.
    Wang L; Duggin JA
    J Environ Qual; 2008; 37(6):2145-54. PubMed ID: 18948468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers.
    Peng X; Zhang G; Mai B; Hu J; Li K; Wang Z
    Mar Pollut Bull; 2005 Aug; 50(8):856-65. PubMed ID: 16115503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overland flow transport of pathogens from agricultural land receiving faecal wastes.
    Tyrrel SF; Quinton JN
    J Appl Microbiol; 2003; 94 Suppl():87S-93S. PubMed ID: 12675940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.