These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 15998561)
1. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Vogel-Mikus K; Pongrac P; Kump P; Necemer M; Regvar M Environ Pollut; 2006 Jan; 139(2):362-71. PubMed ID: 15998561 [TBL] [Abstract][Full Text] [Related]
2. Changes in elemental uptake and arbuscular mycorrhizal colonisation during the life cycle of Thlaspi praecox Wulfen. Pongrac P; Vogel-Mikus K; Kump P; Necemer M; Tolrà R; Poschenrieder C; Barceló J; Regvar M Chemosphere; 2007 Nov; 69(10):1602-9. PubMed ID: 17614121 [TBL] [Abstract][Full Text] [Related]
3. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Vogel-Mikus K; Drobne D; Regvar M Environ Pollut; 2005 Jan; 133(2):233-42. PubMed ID: 15519454 [TBL] [Abstract][Full Text] [Related]
4. Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Vogel-Mikus K; Pongrac P; Kump P; Necemer M; Simcic J; Pelicon P; Budnar M; Povh B; Regvar M Environ Pollut; 2007 May; 147(1):50-9. PubMed ID: 17070633 [TBL] [Abstract][Full Text] [Related]
5. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. Saison C; Schwartz C; Morel JL Int J Phytoremediation; 2004; 6(1):49-61. PubMed ID: 15224775 [TBL] [Abstract][Full Text] [Related]
6. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Liang HM; Lin TH; Chiou JM; Yeh KC Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408 [TBL] [Abstract][Full Text] [Related]
8. Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Vogel-Mikus K; Simcic J; Pelicon P; Budnar M; Kump P; Necemer M; Mesjasz-Przybyłowicz J; Przybyłowicz WJ; Regvar M Plant Cell Environ; 2008 Oct; 31(10):1484-96. PubMed ID: 18643900 [TBL] [Abstract][Full Text] [Related]
9. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Wang FY; Lin XG; Yin R Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710 [TBL] [Abstract][Full Text] [Related]
10. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Martínez M; Bernal P; Almela C; Vélez D; García-Agustín P; Serrano R; Navarro-Aviñó J Chemosphere; 2006 Jun; 64(3):478-85. PubMed ID: 16337669 [TBL] [Abstract][Full Text] [Related]
11. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Dessureault-Rompré J; Luster J; Schulin R; Tercier-Waeber ML; Nowack B Environ Pollut; 2010 May; 158(5):1955-62. PubMed ID: 19913965 [TBL] [Abstract][Full Text] [Related]
12. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation. Catherine S; Christophe S; Louis MJ Int J Phytoremediation; 2006; 8(2):149-61. PubMed ID: 16924963 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664 [TBL] [Abstract][Full Text] [Related]
14. A study on the effects of lead, cadmium and phosphorus on the lead and cadmium uptake efficacy of Viola baoshanensis inoculated with arbuscular mycorrhizal fungi. Zhong WL; Li JT; Chen YT; Shu WS; Liao B J Environ Monit; 2012 Sep; 14(9):2497-504. PubMed ID: 22864990 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. Deng DM; Deng JC; Li JT; Zhang J; Hu M; Lin Z; Liao B J Integr Plant Biol; 2008 Jun; 50(6):691-8. PubMed ID: 18713409 [TBL] [Abstract][Full Text] [Related]
16. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Citterio S; Prato N; Fumagalli P; Aina R; Massa N; Santagostino A; Sgorbati S; Berta G Chemosphere; 2005 Mar; 59(1):21-9. PubMed ID: 15698640 [TBL] [Abstract][Full Text] [Related]
17. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
18. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. He H; Ye Z; Yang D; Yan J; Xiao L; Zhong T; Yuan M; Cai X; Fang Z; Jing Y Chemosphere; 2013 Feb; 90(6):1960-5. PubMed ID: 23177711 [TBL] [Abstract][Full Text] [Related]
19. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Usman AR; Mohamed HM Chemosphere; 2009 Aug; 76(7):893-9. PubMed ID: 19524998 [TBL] [Abstract][Full Text] [Related]
20. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Fayiga AO; Ma LQ Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]