These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15998733)

  • 1. Computational prediction of native protein ligand-binding and enzyme active site sequences.
    Chakrabarti R; Klibanov AM; Friesner RA
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10153-8. PubMed ID: 15998733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.
    Tian Y; Huang X; Zhu Y
    J Mol Model; 2015 Aug; 21(8):191. PubMed ID: 26162695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence optimization and designability of enzyme active sites.
    Chakrabarti R; Klibanov AM; Friesner RA
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12035-40. PubMed ID: 16103370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple physical model for the prediction and design of protein-DNA interactions.
    Havranek JJ; Duarte CM; Baker D
    J Mol Biol; 2004 Nov; 344(1):59-70. PubMed ID: 15504402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.
    Cheng G; Qian B; Samudrala R; Baker D
    Nucleic Acids Res; 2005; 33(18):5861-7. PubMed ID: 16224101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic optimization model and algorithm for binding sequence selection in computational enzyme design.
    Huang X; Han K; Zhu Y
    Protein Sci; 2013 Jul; 22(7):929-41. PubMed ID: 23649589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection.
    Lim KH; Huang H; Pralle A; Park S
    Biotechnol Bioeng; 2013 Jan; 110(1):57-67. PubMed ID: 22806584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex.
    Freitag S; Le Trong I; Chilkoti A; Klumb LA; Stayton PS; Stenkamp RE
    J Mol Biol; 1998 May; 279(1):211-21. PubMed ID: 9636711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation.
    Brylinski M; Skolnick J
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):129-34. PubMed ID: 18165317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the rotamer library: genetic algorithm combined with the disturbing mutation process for upbuilding protein side-chains.
    Liu Z; Jiang L; Gao Y; Liang S; Chen H; Han Y; Lai L
    Proteins; 2003 Jan; 50(1):49-62. PubMed ID: 12471599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein binding site prediction using an empirical scoring function.
    Liang S; Zhang C; Liu S; Zhou Y
    Nucleic Acids Res; 2006; 34(13):3698-707. PubMed ID: 16893954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of amino acid positions specific for functional groups in a protein family based on local sequence similarity.
    Karasev DA; Veselovsky AV; Oparina NY; Filimonov DA; Sobolev BN
    J Mol Recognit; 2016 Apr; 29(4):159-69. PubMed ID: 26549790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast method to predict protein interaction sites from sequences.
    Gallet X; Charloteaux B; Thomas A; Brasseur R
    J Mol Biol; 2000 Sep; 302(4):917-26. PubMed ID: 10993732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein-protein interaction sites using support vector machines.
    Koike A; Takagi T
    Protein Eng Des Sel; 2004 Feb; 17(2):165-73. PubMed ID: 15047913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.
    Ollikainen N; de Jong RM; Kortemme T
    PLoS Comput Biol; 2015; 11(9):e1004335. PubMed ID: 26397464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel ensemble-based scoring and search algorithm for protein redesign and its application to modify the substrate specificity of the gramicidin synthetase a phenylalanine adenylation enzyme.
    Lilien RH; Stevens BW; Anderson AC; Donald BR
    J Comput Biol; 2005; 12(6):740-61. PubMed ID: 16108714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between functional subclasses and information contained in active-site and ligand-binding residues in diverse superfamilies.
    Nagao C; Nagano N; Mizuguchi K
    Proteins; 2010 Aug; 78(10):2369-84. PubMed ID: 20544971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect.
    Yan Z; Wang J
    Proteins; 2015 Sep; 83(9):1632-42. PubMed ID: 26111900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.