These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15999200)

  • 1. One-electron oxidation of [CCOCC]-* in the gas phase forms stable and decomposing forms of CCCCO.
    Fitzgerald M; Dua S; Bowie JH
    Org Biomol Chem; 2005 Jul; 3(14):2646-51. PubMed ID: 15999200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutral cumulene oxide CCCCO is accessible by one-electron oxidation of [CCCCO]-* in the gas phase.
    Fitzgerald M; McAnoy AM; Bowie JH; Schröder D; Schwarz H
    Org Biomol Chem; 2005 Mar; 3(5):901-10. PubMed ID: 15731877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The one-electron oxidation of [HCCOCC]- to form neutral HCCOCC, and the subsequent rearrangement of HCCOCC to form HCCCCO. An experimental and computational study.
    Fitzgerald M; Bowie JH
    Rapid Commun Mass Spectrom; 2006; 20(4):577-82. PubMed ID: 16429478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rearrangements of transient neutral molecules in the gas phase. Does the conversion of CCCHO to HCCCO involve oxygen or hydrogen migration?
    Tran KM; McAnoy AM; Bowie JH
    Eur J Mass Spectrom (Chichester); 2004; 10(4):441-8. PubMed ID: 15302968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential interstellar molecules. Formation of neutral C(6)CO from C(6)CO(-*) in the gas phase.
    Dua S; Blanksby SJ; Bowie JH
    Rapid Commun Mass Spectrom; 2000; 14(2):118-21. PubMed ID: 10623940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do the interstellar molecules CCCO and CCCS rearrange when energised?
    Tran KM; McAnoy AM; Bowie JH
    Org Biomol Chem; 2004 Apr; 2(7):999-1006. PubMed ID: 15034622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation of neutral CCCO2H and HCCCO2 molecules from anionic precursors in the gas phase: a joint experimental and theoretical study.
    Fitzgerald M; Bowie JH; Schröder D; Schwarz H
    Rapid Commun Mass Spectrom; 2005; 19(24):3705-12. PubMed ID: 16308848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of transient neutrals in the gas phase from anionic precursors. Does energised CNCCO rearrange to NCCCO?
    McAnoy AM; Dua S; Bowie JH
    Org Biomol Chem; 2004 Jun; 2(12):1742-7. PubMed ID: 15188041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas phase generation of the neutrals H2CCCCO, HCCCCDO and CCCHCHO from anionic precursors. Rearrangements of HCCCCDO and CCCHCHO. A joint experimental and theoretical study.
    Fitzgerald M; Bowie JH; Dua S
    Org Biomol Chem; 2003 Sep; 1(17):3111-9. PubMed ID: 14518135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstellar molecule CCCN may be formed by charge-stripping of [CCCN]- in the gas phase, and when energized, undergoes loss of C with partial carbon scrambling.
    Maclean MJ; Fitzgerald M; Bowie JH
    J Phys Chem A; 2007 Dec; 111(50):12932-7. PubMed ID: 18001016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does energized NCCCCCN lose carbon in the gas phase? A joint experimental and theoretical study.
    Wang T; Dua S; Bowie JH
    J Phys Chem A; 2010 Jan; 114(2):949-55. PubMed ID: 20014806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of neutrals from ionic precursors in the gas phase. The rearrangement of CCCCCHO to HCCCCCO.
    Fitzgerald M; Bowie JH; Dua S
    Org Biomol Chem; 2003 May; 1(10):1769-78. PubMed ID: 12926368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of RCCCO and CCC(O)R (R = Me, Ph) neutral radicals from ionic precursors in the gas phase: the rearrangement of CCC(O)Ph.
    Peppe S; McAnoy AM; Dua S; Bowie JH
    Rapid Commun Mass Spectrom; 2004; 18(10):1008-16. PubMed ID: 15150822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative ion photoelectron spectroscopy confirms the prediction that (CO)5 and (CO)6 each has a singlet ground state.
    Bao X; Hrovat DA; Borden WT; Wang XB
    J Am Chem Soc; 2013 Mar; 135(11):4291-8. PubMed ID: 23445075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of the stable radicals .CH2CN, CH3.CHCN and .CH2CH2CN from the anions -CH2CN, CH3-CHCN and -CH2CH2CN in the gas phase. A joint experimental and theoretical study.
    Andreazza HJ; Fitzgerald M; Bowie JH
    Org Biomol Chem; 2006 Jun; 4(12):2466-72. PubMed ID: 16763693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational studies on the ground and excited states of BrOOBr.
    Li Y; Vo CK
    J Chem Phys; 2006 May; 124(20):204309. PubMed ID: 16774334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of neutral molecules of potential stellar interest by neutralisation of negative ions in a mass spectrometer. The application of experiment and molecular modelling in concert.
    Bowie JH; Peppe S; Dua S; Blanksby SJ
    J Mol Graph Model; 2003 Mar; 21(5):357-64. PubMed ID: 12543134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of the cyclization processes of energized CCCSi and CCCP.
    Maclean MJ; Eichinger PC; Wang T; Fitzgerald M; Bowie JH
    J Phys Chem A; 2008 Dec; 112(49):12714-20. PubMed ID: 19007196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substituent effects on singlet-triplet gaps and mechanisms of 1,2-rearrangements of 1,3-oxazol-2-ylidenes to 1,3-oxazoles.
    Freeman F; Lau DJ; Patel AR; Pavia PR; Willey JD
    J Phys Chem A; 2008 Sep; 112(37):8775-84. PubMed ID: 18714948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.