These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15999252)

  • 1. Effect of the Y-piece of the ventilation circuit on ventilation requirements in extremely low birth weight infants.
    Wald M; Jeitler V; Lawrenz K; Weninger M; Kirchner L
    Intensive Care Med; 2005 Aug; 31(8):1095-100. PubMed ID: 15999252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Endotracheal Tube Connector Dead Space Improves Ventilation: A Bench Test on a Model Lung Simulating an Extremely Low Birth Weight Neonate.
    Ivanov VA
    Respir Care; 2016 Feb; 61(2):155-61. PubMed ID: 26577200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of additional dead space using end-tidal CO2 measurement on ventilating preterm infants: An experimental study.
    Mur L; Annon-Eberharter N; Gombos P; Wald M
    Technol Health Care; 2024; 32(2):779-785. PubMed ID: 37483034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dead-space washout by split-flow ventilation. A new method to reduce ventilation needs in premature infants.
    Wald M; Kalous P; Lawrenz K; Jeitler V; Weninger M; Kirchner L
    Intensive Care Med; 2005 May; 31(5):674-9. PubMed ID: 15838679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant.
    Nassabeh-Montazami S; Abubakar KM; Keszler M
    Pediatr Pulmonol; 2009 Feb; 44(2):128-33. PubMed ID: 19061234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flow sensor suitable for use with split-flow ventilation--first preclinical data.
    Wald M; Jeitler V; Lawrenz K; Weninger M; Pollak A; Kirchner L
    Artif Organs; 2006 Nov; 30(11):888-91. PubMed ID: 17062113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dead space washout by intentional leakage flow during conventional ventilation of premature infants-an experimental study.
    Schöber M; Bohnhorst B; Annon-Eberharter N; Wald M
    Pediatr Pulmonol; 2022 Sep; 57(9):1998-2002. PubMed ID: 35355449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instrumental dead space: A glass ceiling for extremely low birth weight preterm infants? A dead space washout bench study.
    Danan C; Tauzin M; Jung C; Carbonnier B; Dassieu G; Decobert F; Caeymaex L
    Pediatr Pulmonol; 2023 May; 58(5):1514-1519. PubMed ID: 36785523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time and volume dependence of dead space in healthy and surfactant-depleted rat lungs during spontaneous breathing and mechanical ventilation.
    Dassow C; Schwenninger D; Runck H; Guttmann J
    J Appl Physiol (1985); 2013 Nov; 115(9):1268-74. PubMed ID: 23950167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space.
    Hurley EH; Keszler M
    Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Respiratory death space and ventilation of newborn infants].
    Nolte S
    Klin Padiatr; 1992; 204(5):368-72. PubMed ID: 1405425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of instrumental dead space reduction during weaning from synchronized ventilation in preterm infants.
    Estay A; Claure N; D'Ugard C; Organero R; Bancalari E
    J Perinatol; 2010 Jul; 30(7):479-83. PubMed ID: 20010615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients.
    Campbell RS; Davis K; Johannigman JA; Branson RD
    Respir Care; 2000 Mar; 45(3):306-12. PubMed ID: 10771799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halving the Volume of AnaConDa: Evaluation of a New Small-Volume Anesthetic Reflector in a Test Lung Model.
    Bomberg H; Meiser F; Daume P; Bellgardt M; Volk T; Sessler DI; Groesdonk HV; Meiser A
    Anesth Analg; 2019 Aug; 129(2):371-379. PubMed ID: 29787413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soluble vascular endothelial growth factor receptor 1 in tracheal aspirate fluid of preterm neonates at birth may be predictive of bronchopulmonary dysplasia/chronic lung disease.
    Hasan J; Beharry KD; Valencia AM; Strauss A; Modanlou HD
    Pediatrics; 2009 Jun; 123(6):1541-7. PubMed ID: 19482766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apparent dead space with the anesthetic conserving device, AnaConDa®: a clinical and laboratory investigation.
    Sturesson LW; Bodelsson M; Johansson A; Jonson B; Malmkvist G
    Anesth Analg; 2013 Dec; 117(6):1319-24. PubMed ID: 24257381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-inspiration of CO(2) from ventilator circuit: effects of circuit flushing and aspiration of dead space up to high respiratory rate.
    De Robertis E; Uttman L; Jonson B
    Crit Care; 2010; 14(2):R73. PubMed ID: 20420671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective ventilation at conventional rates with tidal volume below instrumental dead space: a bench study.
    Keszler M; Montaner MB; Abubakar K
    Arch Dis Child Fetal Neonatal Ed; 2012 May; 97(3):F188-92. PubMed ID: 22102635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of pulmonary dead space in ventilated newborn infants.
    Dassios T; Kaltsogianni O; Greenough A
    Early Hum Dev; 2017 May; 108():29-32. PubMed ID: 28371672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of deadspace free ventilatory measurements for lung function testing in ventilated newborns: a simulation study.
    Foitzik B; Schaller P; Schmidt M; Schmalisch G
    J Clin Monit Comput; 2000; 16(8):563-73. PubMed ID: 12580232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.