These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15999816)

  • 1. A new approach to obtaining deoxyribo- and ribonucleoside 5'-mono- and triphosphates.
    Khomov VV; Bochkov DV; Tolstikova TG
    Dokl Biochem Biophys; 2005; 401():119-21. PubMed ID: 15999816
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthesis and properties of novel triphosphate analogues: ribonucleoside and deoxyribonucleoside (alpha-P-borano, alpha-P-thio)triphosphates.
    Lin J; Porter KW; Shaw BR
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1019-23. PubMed ID: 11562950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general synthesis of specifically deuterated nucleotides for studies of DNA and RNA.
    Chen B; Jamieson ER; Tullius TD
    Bioorg Med Chem Lett; 2002 Nov; 12(21):3093-6. PubMed ID: 12372509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic approach for production of deoxyribonucleoside- and ribonucleoside-5 -monophosphates and enzymatic synthesis of their polyphosphates.
    Bochkov DV; Khomov VV; Tolstikova TG
    Biochemistry (Mosc); 2006 Jan; 71(1):79-83. PubMed ID: 16457623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuations in deoxyribo- and ribonucleoside triphosphate pools during the mitotic cycle of Physarum polycephalum.
    Fink K
    Biochim Biophys Acta; 1975 Nov; 414(1):85-9. PubMed ID: 1238125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of (alpha-32P) ribo- and deoxyribonucleoside 5'-triphosphates.
    Symons RH
    Methods Enzymol; 1974; 29():102-15. PubMed ID: 4369256
    [No Abstract]   [Full Text] [Related]  

  • 7. [Diazotizable ribo- and deoxyribonucleotide derivatives].
    David S; Lubineau A
    Bull Soc Chim Fr; 1972 Apr; 4():1569-73. PubMed ID: 4675806
    [No Abstract]   [Full Text] [Related]  

  • 8. Some stereochemical requirements of Escherichia coli ribonucleic acid polymerase. Interaction with conformationally restricted ribonucleoside 5'-triphosphates: 8-bromoguanosine, 8-ketoguanosine, and 6-methylcytidine triphosphates.
    Kapuler AM; Reich E
    Biochemistry; 1971 Oct; 10(22):4050-61. PubMed ID: 4334404
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthesis of 3'-deoxyapionucleoside triphosphates and their incorporation into DNA by DNA polymerase.
    Kataoka M; Sato K; Matsuda A
    Nucleic Acids Symp Ser (Oxf); 2008; (52):281-2. PubMed ID: 18776363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of deoxy- and ribo H-phosphonate dimers.
    Jäger A; Charubala R; Pfleiderer W
    Nucleic Acids Symp Ser; 1987; (18):197-200. PubMed ID: 3697127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New evidence that the hydrophobic effect and dispersion are not major driving forces for nucleotide base stacking.
    Gellman SH; Haque TS; Newcomb LF
    Biophys J; 1996 Dec; 71(6):3523-6. PubMed ID: 8968621
    [No Abstract]   [Full Text] [Related]  

  • 12. Stereochemical effects of non-ionic methylphosphonates on nucleotide conformations.
    Latha YS; Yathindra N
    Int J Biol Macromol; 1991 Oct; 13(5):301-6. PubMed ID: 1801904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-engineering DNA: design, synthesis, and properties of modified nucleic acids.
    Bergstrom DE; Wang G; Toma JD; Gerry N; Nichols R; Andrews P
    Nucleic Acids Symp Ser; 1993; (29):11-2. PubMed ID: 8247727
    [No Abstract]   [Full Text] [Related]  

  • 14. Non-enzymatic ribonucleotide reduction in the prebiotic context.
    Dragičević I; Barić D; Kovačević B; Golding BT; Smith DM
    Chemistry; 2015 Apr; 21(16):6132-43. PubMed ID: 25754795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From ribonucleoside 5'-aldehydes to ribonucleoside 5'-C-phosphonates as building blocks for oligonucleotide synthesis.
    Petrová M; Králíková S; Budesínský M; Rosenberg I
    Nucleic Acids Symp Ser (Oxf); 2008; (52):591-2. PubMed ID: 18776518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of ribonucleoside triphosphates and deoxyribonucleoside triphosphates in Novikoff hepatoma cells by high-performance liquid chromatography.
    Arezzo F
    Anal Biochem; 1987 Jan; 160(1):57-64. PubMed ID: 3565756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of bivalent copper, nickel, manganese ions with native DNA and its monomers.
    Sorokin VA; Valeev VA; Gladchenko GO; Sysa IV; Blagoi YP; Volchok IV
    J Inorg Biochem; 1996 Aug; 63(2):79-98. PubMed ID: 8699177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of RNA with DNA in template-directed synthesis.
    Zielinski M; Kozlov IA; Orgel LE
    Helv Chim Acta; 2000; 83(8):1678-84. PubMed ID: 11543568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic synthesis of polydeoxynucleotides covalently linked to an oligoribonucleotide primer.
    Feix G
    Biochem Biophys Res Commun; 1972 Mar; 46(6):2141-7. PubMed ID: 5018675
    [No Abstract]   [Full Text] [Related]  

  • 20. Enzymatic recognition of 2'-modified ribonucleoside 5'-triphosphates: towards the evolution of versatile aptamers.
    Lauridsen LH; Rothnagel JA; Veedu RN
    Chembiochem; 2012 Jan; 13(1):19-25. PubMed ID: 22162282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.