BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16000)

  • 1. Effects of GTP on binding of (3H) glucagon to receptors in rat hepatic plasma membranes.
    Lin MC; Nicosia S; Lad PM; Rodbell M
    J Biol Chem; 1977 Apr; 252(8):2790-2. PubMed ID: 16000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostaglandin receptor-adenylate cyclase system in plasma membranes of rat liver and ascites hepatomas, and the effect of GTP upon it.
    Okamura N; Terayama H
    Biochim Biophys Acta; 1977 Feb; 465(1):54-67. PubMed ID: 189813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of glucagon receptors in Golgi fractions of rat liver: evidence for receptors that are uncoupled from adenylyl cyclase.
    Lipson KE; Kolhatkar AA; Cherksey BD; Donner DB
    Biochemistry; 1986 May; 25(9):2612-20. PubMed ID: 3013309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormone receptor modulates the regulatory component of adenylyl cyclase by reducing its requirement for Mg2+ and enhancing its extent of activation by guanine nucleotides.
    Iyengar R; Birnbaumer L
    Proc Natl Acad Sci U S A; 1982 Sep; 79(17):5179-83. PubMed ID: 6291028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent cations regulate glucagon binding. Evidence for actions on receptor-Ns complexes and on receptors uncoupled from Ns.
    Lipson KE; Kolhatkar AA; Maki RG; Donner DB
    Biochemistry; 1988 Feb; 27(4):1111-6. PubMed ID: 2835083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hepatic glucagon receptor: a comparative study of the regulatory and structural properties.
    Padrell E; Herberg JT; Monsatirsky B; Floyd G; Premont RT; Iyengar R
    Endocrinology; 1987 Jun; 120(6):2316-25. PubMed ID: 3032585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change of coupling system of receptor-adenylate cyclase induced by epinephrine and GTP in plasma membranes of rat liver.
    Okamura N; Terayama H
    Biochim Biophys Acta; 1978 Nov; 544(1):113-27. PubMed ID: 214146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase.
    Houslay MD; Dipple I; Elliott KR
    Biochem J; 1980 Mar; 186(3):649-58. PubMed ID: 6249258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the hepatic alpha 1-adrenergic receptor. Modulation of guanine nucleotide effects by calcium, temperature, and age.
    Lynch CJ; Charest R; Blackmore PF; Exton JH
    J Biol Chem; 1985 Feb; 260(3):1593-600. PubMed ID: 2981866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the epinephrine-mediated activation of adenylate cyclase in plasma membranes from liver and ascites hepatomas of rats.
    Okamura N; Terayama H
    Biochim Biophys Acta; 1976 Dec; 455(2):297-314. PubMed ID: 187240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of glucagon receptors in rat brain.
    Hoosein NM; Gurd RS
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4368-72. PubMed ID: 6087321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubilization and separation of the glucagon receptor and adenylate cyclase in guanine nucleotide-sensitive states.
    Welton AF; Lad PM; Newby AC; Yamamura H; Nicosia S; Rodbell M
    J Biol Chem; 1977 Sep; 252(17):5947-50. PubMed ID: 197078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor binding and adenylate cyclase activities of glucagon analogues modified in the N-terminal region.
    McKee RL; Pelton JT; Trivedi D; Johnson DG; Coy DH; Sueiras-Diaz J; Hruby VJ
    Biochemistry; 1986 Apr; 25(7):1650-6. PubMed ID: 3011069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of a glucagon photoaffinity label to rat liver plasma membranes and its effect on adenylate cyclase activity before and after photolysis.
    Demoliou-Mason C; Epand RM
    Biochemistry; 1982 Apr; 21(9):1989-96. PubMed ID: 7093224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production.
    Crane JK; Campanile CP; Garrison JC
    J Biol Chem; 1982 May; 257(9):4959-65. PubMed ID: 6279654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the hepatic glucagon receptor. Identification of a guanine nucleotide-sensitive hormone-binding region.
    Iyengar R; Herberg JT
    J Biol Chem; 1984 Apr; 259(8):5222-9. PubMed ID: 6325424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient complexes. A new structural model for the activation of adenylate cyclase by hormone receptors (guanine nucleotides/irradiation inactivation).
    Martin BR; Stein JM; Kennedy EL; Doberska CA; Metcalfe JC
    Biochem J; 1979 Nov; 184(2):253-60. PubMed ID: 230831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of glucagon receptors in rat retina.
    Fernandez-Durango R; Sanchez D; Fernandez-Cruz A
    J Neurochem; 1990 Apr; 54(4):1233-7. PubMed ID: 2156017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic glucagon-receptor complexes lose sensitivity to the dissociating effect of GTP.
    Corin RE; Ferriola P; Donner DB
    J Biol Chem; 1982 Feb; 257(4):1626-31. PubMed ID: 6276394
    [No Abstract]   [Full Text] [Related]  

  • 20. Identification of distinct receptor complexes that account for high-and low-affinity glucagon binding to hepatic plasma membranes.
    Mason JC; Tager HS
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6835-9. PubMed ID: 2995990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.