These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16000619)

  • 21. The recognition of a novel-object in a novel context leads to hippocampal and parahippocampal c-Fos involvement.
    Arias N; Méndez M; Arias JL
    Behav Brain Res; 2015 Oct; 292():44-9. PubMed ID: 26072392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation.
    Matsushita M; Tomizawa K; Moriwaki A; Li ST; Terada H; Matsui H
    J Neurosci; 2001 Aug; 21(16):6000-7. PubMed ID: 11487623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of computational models of familiarity discrimination in the perirhinal cortex.
    Bogacz R; Brown MW
    Hippocampus; 2003; 13(4):494-524. PubMed ID: 12836918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CREB in long-term potentiation in hippocampus: role of post-translational modifications-studies In silico.
    Kaleem A; Hoessli DC; Haq IU; Walker-Nasir E; Butt A; Iqbal Z; Zamani Z; Shakoori AR;
    J Cell Biochem; 2011 Jan; 112(1):138-46. PubMed ID: 21053365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The human perirhinal cortex and recognition memory.
    Buffalo EA; Reber PJ; Squire LR
    Hippocampus; 1998; 8(4):330-9. PubMed ID: 9744420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory.
    Kobayashi M; Masaki T; Hori K; Masuo Y; Miyamoto M; Tsubokawa H; Noguchi H; Nomura M; Takamatsu K
    Neuroscience; 2005; 133(2):471-84. PubMed ID: 15878804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory.
    Winters BD; Bussey TJ
    J Neurosci; 2005 Apr; 25(17):4243-51. PubMed ID: 15858050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The perceptual-mnemonic/feature conjunction model of perirhinal cortex function.
    Bussey TJ; Saksida LM; Murray EA
    Q J Exp Psychol B; 2005; 58(3-4):269-82. PubMed ID: 16194969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fos imaging reveals differential neuronal activation of areas of rat temporal cortex by novel and familiar sounds.
    Wan H; Warburton EC; Kuśmierek P; Aggleton JP; Kowalska DM; Brown MW
    Eur J Neurosci; 2001 Jul; 14(1):118-24. PubMed ID: 11488955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different contributions of the hippocampus and perirhinal cortex to recognition memory.
    Wan H; Aggleton JP; Brown MW
    J Neurosci; 1999 Feb; 19(3):1142-8. PubMed ID: 9920675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Input-and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro.
    Ziakopoulos Z; Tillett CW; Brown MW; Bashir ZI
    Neuroscience; 1999; 92(2):459-72. PubMed ID: 10408597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential BDNF signaling in dentate gyrus and perirhinal cortex during consolidation of recognition memory in the rat.
    Callaghan CK; Kelly ÁM
    Hippocampus; 2012 Nov; 22(11):2127-35. PubMed ID: 22573708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex.
    Scott HL; Tamagnini F; Narduzzo KE; Howarth JL; Lee YB; Wong LF; Brown MW; Warburton EC; Bashir ZI; Uney JB
    Eur J Neurosci; 2012 Oct; 36(7):2941-8. PubMed ID: 22845676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lesions of the rat perirhinal cortex spare the acquisition of a complex configural visual discrimination yet impair object recognition.
    Aggleton JP; Albasser MM; Aggleton DJ; Poirier GL; Pearce JM
    Behav Neurosci; 2010 Feb; 124(1):55-68. PubMed ID: 20141280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture.
    Barco A; Alarcon JM; Kandel ER
    Cell; 2002 Mar; 108(5):689-703. PubMed ID: 11893339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the human medial temporal lobe in object recognition and object discrimination.
    Holdstock JS
    Q J Exp Psychol B; 2005; 58(3-4):326-39. PubMed ID: 16194972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociation of the effect of spatial behaviors on the phosphorylation of cAMP-response element binding protein (CREB) within the nucleus accumbens.
    Alvarez-Jaimes L; Centeno-González M; Feliciano-Rivera M; Maldonado-Vlaar CS
    Neuroscience; 2005; 130(4):833-42. PubMed ID: 15652982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viral-mediated expression of a constitutively active form of cAMP response element binding protein in the dentate gyrus increases long term synaptic plasticity.
    Marchetti C; Tafi E; Marie H
    Neuroscience; 2011 Sep; 190():21-6. PubMed ID: 21712073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perirhinal cortex lesions in rats: Novelty detection and sensitivity to interference.
    Albasser MM; Olarte-Sánchez CM; Amin E; Brown MW; Kinnavane L; Aggleton JP
    Behav Neurosci; 2015 Jun; 129(3):227-43. PubMed ID: 26030425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory.
    Gong B; Cao Z; Zheng P; Vitolo OV; Liu S; Staniszewski A; Moolman D; Zhang H; Shelanski M; Arancio O
    Cell; 2006 Aug; 126(4):775-88. PubMed ID: 16923396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.