These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16000619)

  • 61. Galanin regulates spatial memory but not visual recognition memory or synaptic plasticity in perirhinal cortex.
    Massey PV; Warburton EC; Wynick D; Brown MW; Bashir ZI
    Neuropharmacology; 2003 Jan; 44(1):40-8. PubMed ID: 12559120
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells.
    Freeland K; Boxer LM; Latchman DS
    Brain Res Mol Brain Res; 2001 Aug; 92(1-2):98-106. PubMed ID: 11483246
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Long-term potentiation in the reciprocal corticohippocampal and corticocortical pathways in the chronically implanted, freely moving rat.
    Ivanco TL; Racine RJ
    Hippocampus; 2000; 10(2):143-52. PubMed ID: 10791836
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The perirhinal cortex and long-term familiarity memory.
    Rolls ET; Franco L; Stringer SM
    Q J Exp Psychol B; 2005; 58(3-4):234-45. PubMed ID: 16194967
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Perirhinal cortex and feature-ambiguous discriminations.
    Bussey TJ; Saksida LM; Murray EA
    Learn Mem; 2006; 13(2):103-5; author reply 106-7. PubMed ID: 16585785
    [No Abstract]   [Full Text] [Related]  

  • 66. Role of galanin receptor 1 and galanin receptor 2 activation in synaptic plasticity associated with 3',5'-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus: studies with a galanin receptor 2 agonist and galanin receptor 1 knockout mice.
    Badie-Mahdavi H; Lu X; Behrens MM; Bartfai T
    Neuroscience; 2005; 133(2):591-604. PubMed ID: 15885916
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of calcium-dependent and -independent signaling pathways involved in polychlorinated biphenyl-induced cyclic AMP-responsive element-binding protein phosphorylation in developing cortical neurons.
    Inglefield JR; Mundy WR; Meacham CA; Shafer TJ
    Neuroscience; 2002; 115(2):559-73. PubMed ID: 12421622
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein.
    Bourtchuladze R; Frenguelli B; Blendy J; Cioffi D; Schutz G; Silva AJ
    Cell; 1994 Oct; 79(1):59-68. PubMed ID: 7923378
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses.
    Mitoma H; Konishi S
    Neuroscience; 1999; 88(3):871-83. PubMed ID: 10363824
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Magnitude of the object recognition deficit associated with perirhinal cortex damage in rats: Effects of varying the lesion extent and the duration of the sample period.
    Albasser MM; Davies M; Futter JE; Aggleton JP
    Behav Neurosci; 2009 Feb; 123(1):115-24. PubMed ID: 19170436
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Perirhinal cortex ablation impairs visual object identification.
    Buckley MJ; Gaffan D
    J Neurosci; 1998 Mar; 18(6):2268-75. PubMed ID: 9482811
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Perceptual functions of perirhinal cortex in rats: zero-delay object recognition and simultaneous oddity discriminations.
    Bartko SJ; Winters BD; Cowell RA; Saksida LM; Bussey TJ
    J Neurosci; 2007 Mar; 27(10):2548-59. PubMed ID: 17344392
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Involvement of single unit activity in inferotemporal and perirhinal cortices in recognition memory of visual objects in the macaque.
    Sobótka S
    Acta Neurobiol Exp (Wars); 2000; 60(2):219-26. PubMed ID: 10909180
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CREB transcription in the medial prefrontal cortex regulates the formation of long-term associative recognition memory.
    Barker GR; Wong LF; Uney JB; Warburton EC
    Learn Mem; 2020 Feb; 27(2):45-51. PubMed ID: 31949036
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanisms of synaptic plasticity and recognition memory in the perirhinal cortex.
    Banks PJ; Warburton EC; Brown MW; Bashir ZI
    Prog Mol Biol Transl Sci; 2014; 122():193-209. PubMed ID: 24484702
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CREB serine 133 is necessary for spatial cognitive flexibility and long-term potentiation.
    Morè L; Privitera L; Perrett P; Cooper DD; Bonnello MVG; Arthur JSC; Frenguelli BG
    Neuropharmacology; 2022 Nov; 219():109237. PubMed ID: 36049536
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Finding and Not Finding Rat Perirhinal Neuronal Responses to Novelty.
    von Linstow Roloff E; Muller RU; Brown MW
    Hippocampus; 2016 Aug; 26(8):1021-32. PubMed ID: 26972751
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Perirhinal cortex and the recognition of relative familiarity.
    Ameen-Ali KE; Sivakumaran MH; Eacott MJ; O'Connor AR; Ainge JA; Easton A
    Neurobiol Learn Mem; 2021 Jul; 182():107439. PubMed ID: 33862223
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Separate but interacting recognition memory systems for different senses: the role of the rat perirhinal cortex.
    Albasser MM; Amin E; Iordanova MD; Brown MW; Pearce JM; Aggleton JP
    Learn Mem; 2011 Jul; 18(7):435-43. PubMed ID: 21685150
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of perirhinal cortex in object perception, memory, and associations.
    Murray EA; Richmond BJ
    Curr Opin Neurobiol; 2001 Apr; 11(2):188-93. PubMed ID: 11301238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.