These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 16000633)

  • 1. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors.
    Cheung VC; d'Avella A; Tresch MC; Bizzi E
    J Neurosci; 2005 Jul; 25(27):6419-34. PubMed ID: 16000633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors.
    Cheung VC; d'Avella A; Bizzi E
    J Neurophysiol; 2009 Mar; 101(3):1235-57. PubMed ID: 19091930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modules in the brain stem and spinal cord underlying motor behaviors.
    Roh J; Cheung VC; Bizzi E
    J Neurophysiol; 2011 Sep; 106(3):1363-78. PubMed ID: 21653716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shared and specific muscle synergies in natural motor behaviors.
    d'Avella A; Bizzi E
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):3076-81. PubMed ID: 15708969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent roles in hindlimb wipe-reflex trajectories: free-limb kinematics and motor patterns.
    Kargo WJ; Giszter SF
    J Neurophysiol; 2000 Mar; 83(3):1480-501. PubMed ID: 10712474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog.
    Saltiel P; Wyler-Duda K; D'Avella A; Tresch MC; Bizzi E
    J Neurophysiol; 2001 Feb; 85(2):605-19. PubMed ID: 11160497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple experimentally based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs.
    Kargo WJ; Ramakrishnan A; Hart CB; Rome LC; Giszter SF
    J Neurophysiol; 2010 Jan; 103(1):573-90. PubMed ID: 19657082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinations of muscle synergies in the construction of a natural motor behavior.
    d'Avella A; Saltiel P; Bizzi E
    Nat Neurosci; 2003 Mar; 6(3):300-8. PubMed ID: 12563264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular premotor drives and unit bursts as primitives for frog motor behaviors.
    Hart CB; Giszter SF
    J Neurosci; 2004 Jun; 24(22):5269-82. PubMed ID: 15175397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches to revealing the neural basis of muscle synergies: a review and a critique.
    Cheung VCK; Seki K
    J Neurophysiol; 2021 May; 125(5):1580-1597. PubMed ID: 33729869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural control in the lamprey: A study with a neuro-mechanical model.
    Zelenin PV; Deliagina TG; Grillner S; Orlovsky GN
    J Neurophysiol; 2000 Dec; 84(6):2880-7. PubMed ID: 11110817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal control of muscle synergies for adult mammalian locomotion.
    Desrochers E; Harnie J; Doelman A; Hurteau MF; Frigon A
    J Physiol; 2019 Jan; 597(1):333-350. PubMed ID: 30334575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dorsal root cut on the forces evoked by spinal microstimulation in the spinalized frog.
    Loeb EP; Giszter SF; Borghesani P; Bizzi E
    Somatosens Mot Res; 1993; 10(1):81-95. PubMed ID: 8484299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor feedback based on task-relevant error robustly predicts temporal recruitment and multidirectional tuning of muscle synergies.
    Safavynia SA; Ting LH
    J Neurophysiol; 2013 Jan; 109(1):31-45. PubMed ID: 23100133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic musculoskeletal properties stabilize wiping movements in the spinalized frog.
    Richardson AG; Slotine JJ; Bizzi E; Tresch MC
    J Neurosci; 2005 Mar; 25(12):3181-91. PubMed ID: 15788775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts.
    Torres-Oviedo G; Ting LH
    J Neurophysiol; 2010 Jun; 103(6):3084-98. PubMed ID: 20393070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutable and immutable features of paw-shake responses after hindlimb deafferentation in the cat.
    Koshland GF; Smith JL
    J Neurophysiol; 1989 Jul; 62(1):162-73. PubMed ID: 2754470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the cerebellum shape the spatiotemporal organization of muscle patterns? Insights from subjects with cerebellar ataxias.
    Berger DJ; Masciullo M; Molinari M; Lacquaniti F; d'Avella A
    J Neurophysiol; 2020 May; 123(5):1691-1710. PubMed ID: 32159425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EMG changes in rat hind limb muscles following bilateral deafferentation.
    Hník P; Vejsada R; Kasicki S
    Pflugers Arch; 1982 Nov; 395(3):182-5. PubMed ID: 6891455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles.
    Santuz A; Akay T; Mayer WP; Wells TL; Schroll A; Arampatzis A
    J Physiol; 2019 Jun; 597(12):3147-3165. PubMed ID: 30916787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.