BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16000747)

  • 1. Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum.
    Shen XH; Jiang CY; Huang Y; Liu ZP; Liu SJ
    Appl Environ Microbiol; 2005 Jul; 71(7):3442-52. PubMed ID: 16000747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum.
    Feng J; Che Y; Milse J; Yin YJ; Liu L; Rückert C; Shen XH; Qi SW; Kalinowski J; Liu SJ
    J Biol Chem; 2006 Apr; 281(16):10778-85. PubMed ID: 16481315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of a gene cluster involved in gentisate catabolism in Rhodococcus sp. strain NCIMB 12038.
    Liu TT; Xu Y; Liu H; Luo S; Yin YJ; Liu SJ; Zhou NY
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):671-8. PubMed ID: 21181154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism.
    Zhou NY; Fuenmayor SL; Williams PA
    J Bacteriol; 2001 Jan; 183(2):700-8. PubMed ID: 11133965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous expression and localization of gentisate transporter Ncg12922 from Corynebacterium glutamicum ATCC 13032.
    Xu Y; Yan DZ; Zhou NY
    Biochem Biophys Res Commun; 2006 Jul; 346(2):555-61. PubMed ID: 16765316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel L-cysteine-dependent maleylpyruvate isomerase in the gentisate pathway of Paenibacillus sp. strain NyZ101.
    Liu TT; Zhou NY
    J Bacteriol; 2012 Aug; 194(15):3987-94. PubMed ID: 22636771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro formation of a catabolic plasmid carrying Klebsiella pneumoniae DNA that allows growth of Escherichia coli K-12 on 3-hydroxybenzoate.
    Robson ND; Parrott S; Cooper RA
    Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():2115-20. PubMed ID: 8760924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of the ncgl2923 -encoded 3-hydroxybenzoate 6-hydroxylase from Corynebacterium glutamicum.
    Yang YF; Zhang JJ; Wang SH; Zhou NY
    J Basic Microbiol; 2010 Dec; 50(6):599-604. PubMed ID: 20806251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.
    Huang Y; Zhao KX; Shen XH; Chaudhry MT; Jiang CY; Liu SJ
    Appl Environ Microbiol; 2006 Nov; 72(11):7238-45. PubMed ID: 16963551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of 3-hydroxybenzoate by the gentisate pathway in Klebsiella pneumoniae M5a1.
    Jones DC; Cooper RA
    Arch Microbiol; 1990; 154(5):489-95. PubMed ID: 2256782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GenR, an IclR-type regulator, activates and represses the transcription of gen genes involved in 3-hydroxybenzoate and gentisate catabolism in Corynebacterium glutamicum.
    Chao H; Zhou NY
    J Bacteriol; 2013 Apr; 195(7):1598-609. PubMed ID: 23354754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and molecular characterization of the gentisate transporter GenK in Corynebacterium glutamicum.
    Xu Y; Wang SH; Chao HJ; Liu SJ; Zhou NY
    PLoS One; 2012; 7(7):e38701. PubMed ID: 22808015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes.
    Poh CL; Bayly RC
    J Bacteriol; 1980 Jul; 143(1):59-69. PubMed ID: 6995451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the global regulator GlxR in 3-hydroxybenzoate and gentisate utilization by Corynebacterium glutamicum.
    Chao H; Zhou NY
    Appl Environ Microbiol; 2014 Jul; 80(14):4215-25. PubMed ID: 24795375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gentisate pathway in Salmonella typhimurium: metabolism of m-hydroxybenzoate and gentisate.
    Goetz FE; Harmuth LJ
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):45-9. PubMed ID: 1427003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. o-, m- and p-hydroxybenzoate degradative pathways in Rhodococcus erythropolis.
    Suemori A; Nakajima K; Kurane R; Nakamura Y
    FEMS Microbiol Lett; 1995 Jan; 125(1):31-5. PubMed ID: 7867918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400.
    Romero-Silva MJ; Méndez V; Agulló L; Seeger M
    PLoS One; 2013; 8(2):e56038. PubMed ID: 23418504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a Specific Maleate Hydratase in the Direct Hydrolysis Route of the Gentisate Pathway.
    Liu K; Xu Y; Zhou NY
    Appl Environ Microbiol; 2015 Sep; 81(17):5753-60. PubMed ID: 26070679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum.
    Shen X; Liu S
    Sci China C Life Sci; 2005 Jun; 48(3):241-9. PubMed ID: 16092756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.