BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16000749)

  • 21. Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov.
    Knoblauch C; Sahm K; Jørgensen BB
    Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1631-43. PubMed ID: 10555345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition.
    Tan B; Semple K; Foght J
    FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25873461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate.
    Müller JA; Galushko AS; Kappler A; Schink B
    Arch Microbiol; 1999 Nov; 172(5):287-94. PubMed ID: 10550470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions.
    Berthe-Corti L; Ebenhöh W
    Biosystems; 1999 Mar; 49(3):161-89. PubMed ID: 10193758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular fatty acids derived from normal alkanes by Candida rugosa.
    Iida M; Kobayashi H; Iizuka H
    Z Allg Mikrobiol; 1980; 20(7):449-57. PubMed ID: 7434793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor.
    Balk M; Altinbaş M; Rijpstra WI; Sinninghe Damsté JS; Stams AJ
    Int J Syst Evol Microbiol; 2008 Jan; 58(Pt 1):110-5. PubMed ID: 18175693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium.
    Callaghan AV; Tierney M; Phelps CD; Young LY
    Appl Environ Microbiol; 2009 Mar; 75(5):1339-44. PubMed ID: 19114507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA; Finnerty WR
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons.
    Golyshin PN; Chernikova TN; Abraham WR; Lünsdorf H; Timmis KN; Yakimov MM
    Int J Syst Evol Microbiol; 2002 May; 52(Pt 3):901-11. PubMed ID: 12054256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metagenomic Characterization of Candidatus Smithella cisternae Strain M82_1, a Syntrophic Alkane-Degrading Bacteria, Enriched from the Shengli Oil Field.
    Qin QS; Feng DS; Liu PF; He Q; Li X; Liu AM; Zhang H; Hu GQ; Cheng L
    Microbes Environ; 2017 Sep; 32(3):234-243. PubMed ID: 28781346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
    Michaelis W; Seifert R; Nauhaus K; Treude T; Thiel V; Blumenberg M; Knittel K; Gieseke A; Peterknecht K; Pape T; Boetius A; Amann R; Jørgensen BB; Widdel F; Peckmann J; Pimenov NV; Gulin MB
    Science; 2002 Aug; 297(5583):1013-5. PubMed ID: 12169733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1.
    Park MO
    J Bacteriol; 2005 Feb; 187(4):1426-9. PubMed ID: 15687207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea.
    Mussmann M; Ishii K; Rabus R; Amann R
    Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea.
    Matsui GY; Ringelberg DB; Lovell CR
    Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacteria from hydrocarbon seep areas growing on short-chain alkanes.
    Muyzer G; van der Kraan GM
    Trends Microbiol; 2008 Apr; 16(4):138-41. PubMed ID: 18328711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The diversity of alkane degrading bacteria in the enrichments with deep sea sediment of the South China Sea].
    Liu Z; Shao ZZ
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):869-73. PubMed ID: 18062265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture.
    Davidova IA; Gieg LM; Nanny M; Kropp KG; Suflita JM
    Appl Environ Microbiol; 2005 Dec; 71(12):8174-82. PubMed ID: 16332800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.
    Grossi V; Mollex D; Vinçon-Laugier A; Hakil F; Pacton M; Cravo-Laureau C
    Appl Environ Microbiol; 2015 May; 81(9):3157-68. PubMed ID: 25724965
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus.
    Khelifi N; Amin Ali O; Roche P; Grossi V; Brochier-Armanet C; Valette O; Ollivier B; Dolla A; Hirschler-Réa A
    ISME J; 2014 Nov; 8(11):2153-66. PubMed ID: 24763368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.