These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16000753)

  • 1. Description of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide.
    Goodwin KD; Tokarczyk R; Stephens FC; Saltzman ES
    Appl Environ Microbiol; 2005 Jul; 71(7):3495-503. PubMed ID: 16000753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural methyl bromide and methyl chloride emissions from coastal salt marshes.
    Rhew RC; Miller BR; Weiss RF
    Nature; 2000 Jan; 403(6767):292-5. PubMed ID: 10659844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regiospecific oxidation of naphthalene and fluorene by toluene monooxygenases and engineered toluene 4-monooxygenases of Pseudomonas mendocina KR1.
    Tao Y; Bentley WE; Wood TK
    Biotechnol Bioeng; 2005 Apr; 90(1):85-94. PubMed ID: 15723332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of methyl halide-degrading microorganisms in oceanic and coastal waters.
    Cox MJ; Schäfer H; Nightingale PD; McDonald IR; Murrell JC
    FEMS Microbiol Lett; 2012 Sep; 334(2):111-8. PubMed ID: 22724426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
    Anbar AD; Yung YL; Chavez FP
    Global Biogeochem Cycles; 1996 Mar; 10(1):175-90. PubMed ID: 11539402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria.
    Schäfer H; McDonald IR; Nightingale PD; Murrell JC
    Environ Microbiol; 2005 Jun; 7(6):839-52. PubMed ID: 15892703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase.
    Yen KM; Karl MR; Blatt LM; Simon MJ; Winter RB; Fausset PR; Lu HS; Harcourt AA; Chen KK
    J Bacteriol; 1991 Sep; 173(17):5315-27. PubMed ID: 1885512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of copper(II)-based chemicals induces CH
    Jiao Y; Zhang W; Kim JYR; Deventer MJ; Vollering J; Rhew RC
    Nat Commun; 2022 Jan; 13(1):47. PubMed ID: 35013262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone.
    Tao Y; Fishman A; Bentley WE; Wood TK
    J Bacteriol; 2004 Jul; 186(14):4705-13. PubMed ID: 15231803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotopic Characterization (
    Horst A; Bonifacie M; Bardoux G; Richnow HH
    Environ Sci Technol; 2019 Aug; 53(15):8813-8822. PubMed ID: 31286766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum.
    Morasch B; Schink B; Tebbe CC; Meckenstock RU
    Arch Microbiol; 2004 Jun; 181(6):407-17. PubMed ID: 15127183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of methyl bromide with soil.
    Tao T; Maciel GE
    Environ Sci Technol; 2002 Feb; 36(4):603-7. PubMed ID: 11878373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the tol (pWWO) plasmid.
    Dinkla IJ; Gabor EM; Janssen DB
    Appl Environ Microbiol; 2001 Aug; 67(8):3406-12. PubMed ID: 11472911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consumption of tropospheric levels of methyl bromide by C(1) compound-utilizing bacteria and comparison to saturation kinetics.
    Goodwin KD; Varner RK; Crill PM; Oremland RS
    Appl Environ Microbiol; 2001 Dec; 67(12):5437-43. PubMed ID: 11722890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl Chloride and Methyl Bromide Production and Consumption in Coastal Antarctic Tundra Soils Subject to Sea Animal Activities.
    Zhang W; Jiao Y; Zhu R; Rhew RC
    Environ Sci Technol; 2020 Oct; 54(20):13354-13363. PubMed ID: 32935983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methyl bromide production from dissolved organic matter under simulated sunlight irradiation and the important effect of ferric ions.
    Liu H; Tong T; Pu Y; Zhu X; Sun B; Wang Z; Yan Z
    Environ Sci Process Impacts; 2020 Mar; 22(3):751-758. PubMed ID: 32067016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1.
    Tao Y; Fishman A; Bentley WE; Wood TK
    Appl Environ Microbiol; 2004 Jul; 70(7):3814-20. PubMed ID: 15240250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of o-xylene to o-methyl benzoic acid by a denitrifying enrichment culture using toluene as the primary substrate.
    Jørgensen C; Nielsen B; Jensen BK; Mortensen E
    Biodegradation; 1995 Jun; 6(2):141-6. PubMed ID: 7772940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight Into the Formation Paths of Methyl Bromide From Syringic Acid in Aqueous Bromide Solutions Under Simulated Sunlight Irradiation.
    Liu H; Tong T; Pu Y; Sun B; Zhu X; Yan Z
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32245114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Polycyclic aromatic hydrocarbon-degrading bacterium Novosphingobium sp. H25 isolated from deep sea and its degrading genes].
    Jun Y; Qiliang L; Tianling Z; Zongze S
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1208-13. PubMed ID: 19062646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.