These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16000802)

  • 1. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Sato T; Fukui T; Atomi H; Imanaka T
    Appl Environ Microbiol; 2005 Jul; 71(7):3889-99. PubMed ID: 16000802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Sato T; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2003 Jan; 185(1):210-20. PubMed ID: 12486058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic manipulations of the hyperthermophilic piezophilic archaeon Thermococcus barophilus.
    Thiel A; Michoud G; Moalic Y; Flament D; Jebbar M
    Appl Environ Microbiol; 2014 Apr; 80(7):2299-306. PubMed ID: 24487541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance.
    Matsumi R; Manabe K; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2007 Apr; 189(7):2683-91. PubMed ID: 17259314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon.
    Santangelo TJ; Cubonová L; Reeve JN
    Appl Environ Microbiol; 2008 May; 74(10):3099-104. PubMed ID: 18378640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of large heterologous DNA fragments into the genome of Thermococcus kodakarensis.
    Sato T; Takada D; Itoh T; Ohkuma M; Atomi H
    Extremophiles; 2020 May; 24(3):339-353. PubMed ID: 32112303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis.
    Imanaka H; Yamatsu A; Fukui T; Atomi H; Imanaka T
    Mol Microbiol; 2006 Aug; 61(4):898-909. PubMed ID: 16879645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Mutant Chaperonin That Is Functional at Lower Temperatures Enables Hyperthermophilic Archaea To Grow under Cold-Stress Conditions.
    Gao L; Imanaka T; Fujiwara S
    J Bacteriol; 2015 Aug; 197(16):2642-52. PubMed ID: 26013483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles.
    Sato T; Imanaka H; Rashid N; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2004 Sep; 186(17):5799-807. PubMed ID: 15317785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research.
    Rashid N; Aslam M
    Folia Microbiol (Praha); 2020 Feb; 65(1):67-78. PubMed ID: 31286382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases.
    Lipscomb GL; Stirrett K; Schut GJ; Yang F; Jenney FE; Scott RA; Adams MW; Westpheling J
    Appl Environ Microbiol; 2011 Apr; 77(7):2232-8. PubMed ID: 21317259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of pyrF-based gene knockout systems for genome-wide manipulation of the archaea Haloferax mediterranei and Haloarcula hispanica.
    Liu H; Han J; Liu X; Zhou J; Xiang H
    J Genet Genomics; 2011 Jun; 38(6):261-9. PubMed ID: 21703550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmarked gene integration into the chromosome of Mycobacterium smegmatis via precise replacement of the pyrF gene.
    Knipfer N; Seth A; Shrader TE
    Plasmid; 1997; 37(2):129-40. PubMed ID: 9169204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different roles of two transcription factor B proteins in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Hidese R; Nishikawa R; Gao L; Katano M; Imai T; Kato S; Kanai T; Atomi H; Imanaka T; Fujiwara S
    Extremophiles; 2014 May; 18(3):573-88. PubMed ID: 24627188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp. strain NA1.
    Lee HS; Kim YJ; Bae SS; Jeon JH; Lim JK; Jeong BC; Kang SG; Lee JH
    Appl Environ Microbiol; 2006 Mar; 72(3):1886-90. PubMed ID: 16517635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Louvel H; Kanai T; Atomi H; Reeve JN
    FEMS Microbiol Lett; 2009 Jun; 295(1):117-28. PubMed ID: 19484827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Yokooji Y; Sato T; Fujiwara S; Imanaka T; Atomi H
    J Bacteriol; 2013 May; 195(9):1940-8. PubMed ID: 23435976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse gyrase is not a prerequisite for hyperthermophilic life.
    Atomi H; Matsumi R; Imanaka T
    J Bacteriol; 2004 Jul; 186(14):4829-33. PubMed ID: 15231817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of a Toxin-Antitoxin Gene Cassette under High Hydrostatic Pressure Enables Markerless Gene Disruption in the Hyperthermophilic Archaeon
    Song Q; Li Z; Chen R; Ma X; Xiao X; Xu J
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Fukuda W; Yamori Y; Hamakawa M; Osaki M; Fukuda M; Hidese R; Kanesaki Y; Okamoto-Kainuma A; Kato S; Fujiwara S
    Amino Acids; 2020 Feb; 52(2):287-299. PubMed ID: 31621031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.