These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16000812)

  • 41. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.
    Berelson WM; Corsetti FA; Pepe-Ranney C; Hammond DE; Beaumont W; Spear JR
    Geobiology; 2011 Sep; 9(5):411-24. PubMed ID: 21777367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiology, Metabolism, and Fossilization of Hot-Spring Filamentous Microbial Mats.
    Dong Y; Sanford RA; Inskeep WP; Srivastava V; Bulone V; Fields CJ; Yau PM; Sivaguru M; Ahrén D; Fouke KW; Weber J; Werth CR; Cann IK; Keating KM; Khetani RS; Hernandez AG; Wright C; Band M; Imai BS; Fried GA; Fouke BW
    Astrobiology; 2019 Dec; 19(12):1442-1458. PubMed ID: 31038352
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential.
    Klatt CG; Wood JM; Rusch DB; Bateson MM; Hamamura N; Heidelberg JF; Grossman AR; Bhaya D; Cohan FM; Kühl M; Bryant DA; Ward DM
    ISME J; 2011 Aug; 5(8):1262-78. PubMed ID: 21697961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses.
    Thiel V; Hügler M; Ward DM; Bryant DA
    Front Microbiol; 2017; 8():943. PubMed ID: 28634470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus deprivation responses and phosphonate utilization in a thermophilic Synechococcus sp. from microbial mats.
    Adams MM; Gómez-García MR; Grossman AR; Bhaya D
    J Bacteriol; 2008 Dec; 190(24):8171-84. PubMed ID: 18931115
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Environmental constraints defining the distribution, composition, and evolution of chlorophototrophs in thermal features of Yellowstone National Park.
    Hamilton TL; Vogl K; Bryant DA; Boyd ES; Peters JW
    Geobiology; 2012 May; 10(3):236-49. PubMed ID: 21955797
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park.
    Ross KA; Feazel LM; Robertson CE; Fathepure BZ; Wright KE; Turk-Macleod RM; Chan MM; Held NL; Spear JR; Pace NR
    Microb Ecol; 2012 Jul; 64(1):162-70. PubMed ID: 22327269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The structure and biogeochemical activity of the phototrophic communities from the Bol'sherechenskii alkaline hot spring].
    Namsaraev ZB; Gorlenko VM; Namsaraev BB; Buriukhaev SP; Iurkov VV
    Mikrobiologiia; 2003; 72(2):228-38. PubMed ID: 12751248
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs.
    Schubotz F; Hays LE; Meyer-Dombard DR; Gillespie A; Shock EL; Summons RE
    Front Microbiol; 2015; 6():42. PubMed ID: 25699032
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms.
    Kim YM; Nowack S; Olsen MT; Becraft ED; Wood JM; Thiel V; Klapper I; Kühl M; Fredrickson JK; Bryant DA; Ward DM; Metz TO
    Front Microbiol; 2015; 6():209. PubMed ID: 25941514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach.
    Bühring SI; Smittenberg RH; Sachse D; Lipp JS; Golubic S; Sachs JP; Hinrichs KU; Summons RE
    Geobiology; 2009 Jun; 7(3):308-23. PubMed ID: 19476506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan.
    Kubo K; Knittel K; Amann R; Fukui M; Matsuura K
    Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs.
    Pierson BK; Parenteau MN
    FEMS Microbiol Ecol; 2000 Jun; 32(3):181-196. PubMed ID: 10858577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park.
    Becraft ED; Cohan FM; Kühl M; Jensen SI; Ward DM
    Appl Environ Microbiol; 2011 Nov; 77(21):7689-97. PubMed ID: 21890675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium.
    Otaki H; Everroad RC; Matsuura K; Haruta S
    Microbes Environ; 2012; 27(3):293-9. PubMed ID: 22446313
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipid biomarkers for bacterial ecosystems: studies of cultured organisms, hydrothermal environments and ancient sediments.
    Summons RE; Jahnke LL; Simoneit BR
    Ciba Found Symp; 1996; 202():174-93; discussion 193-4. PubMed ID: 9243016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 'Candidatus Thermochlorobacter aerophilum:' an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics.
    Liu Z; Klatt CG; Ludwig M; Rusch DB; Jensen SI; Kühl M; Ward DM; Bryant DA
    ISME J; 2012 Oct; 6(10):1869-82. PubMed ID: 22456447
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Absence of canonical trophic levels in a microbial mat.
    Gonzalez-Nayeck AC; Mohr W; Tang T; Sattin S; Parenteau MN; Jahnke LL; Pearson A
    Geobiology; 2022 Sep; 20(5):726-740. PubMed ID: 35831948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.
    Dillon JG; Fishbain S; Miller SR; Bebout BM; Habicht KS; Webb SM; Stahl DA
    Appl Environ Microbiol; 2007 Aug; 73(16):5218-26. PubMed ID: 17575000
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ biomass production of a hot spring sulfur-turf microbial mat.
    Kimura H; Mori K; Nashimoto H; Hanada S; Kato K
    Microbes Environ; 2010; 25(2):140-3. PubMed ID: 21576865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.