These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 16000823)

  • 1. Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants.
    Kong Y; Nielsen JL; Nielsen PH
    Appl Environ Microbiol; 2005 Jul; 71(7):4076-85. PubMed ID: 16000823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants.
    Kong Y; Nielsen JL; Nielsen PH
    Appl Environ Microbiol; 2004 Sep; 70(9):5383-90. PubMed ID: 15345424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The large PAO cells in full-scale EBPR biomass samples are not yeast spores but possibly novel members of the beta-Proteobacteria.
    Chua AS; Eales K; Mino T; Seviour R
    Water Sci Technol; 2004; 50(6):123-30. PubMed ID: 15536999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal.
    Lee N; Nielsen PH; Aspegren H; Henze M; Schleifer KH; la Cour Jansen J
    Syst Appl Microbiol; 2003 Jun; 26(2):211-27. PubMed ID: 12866848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation.
    Crocetti GR; Hugenholtz P; Bond PL; Schuler A; Keller J; Jenkins D; Blackall LL
    Appl Environ Microbiol; 2000 Mar; 66(3):1175-82. PubMed ID: 10698788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High diversity and abundance of putative polyphosphate-accumulating Tetrasphaera-related bacteria in activated sludge systems.
    Nguyen HT; Le VQ; Hansen AA; Nielsen JL; Nielsen PH
    FEMS Microbiol Ecol; 2011 May; 76(2):256-67. PubMed ID: 21231938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants.
    Kong Y; Xia Y; Nielsen JL; Nielsen PH
    Environ Microbiol; 2006 Mar; 8(3):479-89. PubMed ID: 16478454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ detection of starch-hydrolyzing microorganisms in activated sludge.
    Xia Y; Kong Y; Nielsen PH
    FEMS Microbiol Ecol; 2008 Nov; 66(2):462-71. PubMed ID: 18754781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan.
    Wong MT; Mino T; Seviour RJ; Onuki M; Liu WT
    Water Res; 2005 Aug; 39(13):2901-14. PubMed ID: 15993461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?
    Beer M; Stratton HM; Griffiths PC; Seviour RJ
    J Appl Microbiol; 2006 Feb; 100(2):233-43. PubMed ID: 16430499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Candidatus Halomonas phosphatis', a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants.
    Nguyen HT; Nielsen JL; Nielsen PH
    Environ Microbiol; 2012 Oct; 14(10):2826-37. PubMed ID: 22827168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denitrifying polyphosphate accumulating organisms population and nitrite reductase gene diversity shift in a DEPHANOX-type activated sludge system fed with municipal wastewater.
    Zafiriadis I; Ntougias S; Nikolaidis C; Kapagiannidis AG; Aivasidis A
    J Biosci Bioeng; 2011 Feb; 111(2):185-92. PubMed ID: 21056003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal.
    Lee N; Jansen Jl; Aspegren H; Henze M; Nielsen PH; Wagner M
    Water Sci Technol; 2002; 46(1-2):163-70. PubMed ID: 12216618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining substrate uptake patterns of Rhodocyclus-related PAO in full-scale EBPR plants by using the MAR-FISH technique.
    Chua AS; Onuki M; Satoh H; Mino T
    Water Sci Technol; 2006; 54(1):63-70. PubMed ID: 16898138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecophysiology of polyphosphate-accumulating organisms and glycogen-accumulating organisms in a continuously aerated enhanced biological phosphorus removal process.
    Schroeder S; Ahn J; Seviour RJ
    J Appl Microbiol; 2008 Nov; 105(5):1412-20. PubMed ID: 18557960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presence of Rhodocyclus in a full-scale wastewater treatment plant and their participation in enhanced biological phosphorus removal.
    Zilles JL; Hung CH; Noguera DR
    Water Sci Technol; 2002; 46(1-2):123-8. PubMed ID: 12216613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents.
    Eschenhagen M; Schuppler M; Röske I
    Water Res; 2003 Jul; 37(13):3224-32. PubMed ID: 14509710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and functional analysis of the microbial community in an aerobic: anaerobic sequencing batch reactor (SBR) with no phosphorus removal.
    Kong YH; Beer M; Seviour RJ; Lindrea KC; Rees GN
    Syst Appl Microbiol; 2001 Dec; 24(4):597-609. PubMed ID: 11876367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge.
    Schroeder S; Petrovski S; Campbell B; McIlroy S; Seviour R
    FEMS Microbiol Lett; 2009 Aug; 297(2):157-63. PubMed ID: 19548893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental factors contributing to the "G bacteria" population in full-scale EBPR plants.
    Griffiths PC; Stratton HM; Seviour RJ
    Water Sci Technol; 2002; 46(4-5):185-92. PubMed ID: 12361008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.