These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 1600094)
1. Gating currents in Shaker K+ channels. Implications for activation and inactivation models. Perozo E; Papazian DM; Stefani E; Bezanilla F Biophys J; 1992 Apr; 62(1):160-8; discussion 169-71. PubMed ID: 1600094 [TBL] [Abstract][Full Text] [Related]
2. Coupling between charge movement and pore opening in voltage dependent potassium channels. Stefani E Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189 [TBL] [Abstract][Full Text] [Related]
3. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Bezanilla F; Perozo E; Stefani E Biophys J; 1994 Apr; 66(4):1011-21. PubMed ID: 8038375 [TBL] [Abstract][Full Text] [Related]
4. Molecular basis of gating charge immobilization in Shaker potassium channels. Bezanilla F; Perozo E; Papazian DM; Stefani E Science; 1991 Nov; 254(5032):679-83. PubMed ID: 1948047 [TBL] [Abstract][Full Text] [Related]
5. Gating of Shaker K+ channels: I. Ionic and gating currents. Stefani E; Toro L; Perozo E; Bezanilla F Biophys J; 1994 Apr; 66(4):996-1010. PubMed ID: 8038403 [TBL] [Abstract][Full Text] [Related]
6. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. Ledwell JL; Aldrich RW J Gen Physiol; 1999 Mar; 113(3):389-414. PubMed ID: 10051516 [TBL] [Abstract][Full Text] [Related]
7. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels. Kanevsky M; Aldrich RW J Gen Physiol; 1999 Aug; 114(2):215-42. PubMed ID: 10435999 [TBL] [Abstract][Full Text] [Related]
8. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Perozo E; MacKinnon R; Bezanilla F; Stefani E Neuron; 1993 Aug; 11(2):353-8. PubMed ID: 8352943 [TBL] [Abstract][Full Text] [Related]
9. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions. Tabarean IV; Morris CE Biophys J; 2002 Jun; 82(6):2982-94. PubMed ID: 12023221 [TBL] [Abstract][Full Text] [Related]
10. Fast inactivation in Shaker K+ channels. Properties of ionic and gating currents. Roux MJ; Olcese R; Toro L; Bezanilla F; Stefani E J Gen Physiol; 1998 May; 111(5):625-38. PubMed ID: 9565401 [TBL] [Abstract][Full Text] [Related]
11. Two types of A-channels in Lymnaea neurons. Alekseev SI; Ziskin MC J Membr Biol; 1995 Aug; 146(3):327-41. PubMed ID: 8568847 [TBL] [Abstract][Full Text] [Related]
12. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels. Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578 [TBL] [Abstract][Full Text] [Related]
14. Cations affect the rate of gating charge recovery in wild-type and W434F Shaker channels through a variety of mechanisms. Varga Z; Rayner MD; Starkus JG J Gen Physiol; 2002 May; 119(5):467-85. PubMed ID: 11981024 [TBL] [Abstract][Full Text] [Related]
15. The binding of kappa-Conotoxin PVIIA and fast C-type inactivation of Shaker K+ channels are mutually exclusive. Koch ED; Olivera BM; Terlau H; Conti F Biophys J; 2004 Jan; 86(1 Pt 1):191-209. PubMed ID: 14695262 [TBL] [Abstract][Full Text] [Related]
16. Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel. Wang Z; Fedida D Biophys J; 2001 Nov; 81(5):2614-27. PubMed ID: 11606275 [TBL] [Abstract][Full Text] [Related]