BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16001121)

  • 1. Effect of Thunbergia laurifolia, a Thai natural product used to treat drug addiction, on cerebral activity detected by functional magnetic resonance imaging in the rat.
    Thongsaard W; Marsden CA; Morris P; Prior M; Shah YB
    Psychopharmacology (Berl); 2005 Aug; 180(4):752-60. PubMed ID: 16001121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Thunbergia laurifolia extract on extracellular dopamine level in rat nucleus accumbens.
    Thongsaard W; Marsden C
    J Med Assoc Thai; 2013 Jan; 96 Suppl 1():S85-9. PubMed ID: 23724461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region-specific effects of a tyrosine-free amino acid mixture on amphetamine-induced changes in BOLD fMRI signal in the rat brain.
    Preece MA; Sibson NR; Raley JM; Blamire A; Styles P; Sharp T
    Synapse; 2007 Nov; 61(11):925-32. PubMed ID: 17701967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alleviation of lead poisoning in the brain with aqueous leaf extract of the Thunbergia laurifolia (Linn.).
    Tangpong J; Satarug S
    Toxicol Lett; 2010 Sep; 198(1):83-8. PubMed ID: 20466044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic Effect of Thunbergia laurifolia Extract and Cocaine in Rats Using Behavior Model of Addiction.
    Thongsaard W; Sangpayap R; Marsden C
    J Med Assoc Thai; 2015 Oct; 98 Suppl 9():S48-52. PubMed ID: 26817209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential responses in CBF and CBV to cocaine as measured by fMRI: implications for pharmacological MRI signals derived oxygen metabolism assessment.
    Luo F; Schmidt KF; Fox GB; Ferris CF
    J Psychiatr Res; 2009 Aug; 43(12):1018-24. PubMed ID: 19135215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the central effects of methylphenidate in the rat using pharmacological MRI BOLD contrast.
    Easton N; Marshall FH; Marsden CA; Fone KC
    Neuropharmacology; 2009 Dec; 57(7-8):653-64. PubMed ID: 19733553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping brain activity following administration of a nicotinic acetylcholine receptor agonist, ABT-594, using functional magnetic resonance imaging in awake rats.
    Skoubis PD; Hradil V; Chin CL; Luo Y; Fox GB; McGaraughty S
    Neuroscience; 2006; 137(2):583-91. PubMed ID: 16289887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents.
    Hagberg GE; Bianciardi M; Brainovich V; CassarĂ  AM; Maraviglia B
    Magn Reson Imaging; 2008 Sep; 26(7):1026-40. PubMed ID: 18479875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3.0-T functional brain imaging: a 5-year experience.
    Scarabino T; Giannatempo GM; Popolizio T; Tosetti M; d'Alesio V; Esposito F; Di Salle F; Di Costanzo A; Bertolino A; Maggialetti A; Salvolini U
    Radiol Med; 2007 Feb; 112(1):97-112. PubMed ID: 17310287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study paradigm allowing comparison of multiple high-resolution rCBV-maps for the examination of drug effects.
    Rausch M; Gentsch C; Enz A; Baumann D; Rudin M
    NMR Biomed; 2005 Jun; 18(4):260-8. PubMed ID: 15759291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous functional magnetic resonance imaging in the rat spinal cord and brain.
    Majcher K; Tomanek B; Jasinski A; Foniok T; Stroman PW; Tuor UI; Kirk D; Hess G
    Exp Neurol; 2006 Feb; 197(2):458-64. PubMed ID: 16300762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical mapping of functional olfactory connections of the rat brain in vivo.
    Cross DJ; Minoshima S; Anzai Y; Flexman JA; Keogh BP; Kim Y; Maravilla KR
    Neuroimage; 2004 Dec; 23(4):1326-35. PubMed ID: 15589097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient blood pressure changes affect the functional magnetic resonance imaging detection of cerebral activation.
    Wang R; Foniok T; Wamsteeker JI; Qiao M; Tomanek B; Vivanco RA; Tuor UI
    Neuroimage; 2006 May; 31(1):1-11. PubMed ID: 16460967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term functional consequences of quinolinic acid striatal lesions and their alteration following an addition of a globus pallidus lesion assessed using pharmacological magnetic resonance imaging.
    Tarrasch R; Goelman G; Joel D; Weiner I
    Exp Neurol; 2005 Dec; 196(2):244-53. PubMed ID: 16236282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast.
    Weng JC; Chen JH; Yang PF; Tseng WY
    Neuroimage; 2007 Jul; 36(4):1179-88. PubMed ID: 17537649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping interactions between dopamine and adenosine A2a receptors using pharmacologic MRI.
    Chen YI; Choi JK; Jenkins BG
    Synapse; 2005 Feb; 55(2):80-8. PubMed ID: 15529335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective dopamine D(3) receptor antagonist SB-277011-A potentiates phMRI response to acute amphetamine challenge in the rat brain.
    Schwarz A; Gozzi A; Reese T; Bertani S; Crestan V; Hagan J; Heidbreder C; Bifone A
    Synapse; 2004 Oct; 54(1):1-10. PubMed ID: 15300879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat.
    Weber R; Ramos-Cabrer P; Wiedermann D; van Camp N; Hoehn M
    Neuroimage; 2006 Feb; 29(4):1303-10. PubMed ID: 16223588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T.
    Weiskopf N; Hutton C; Josephs O; Deichmann R
    Neuroimage; 2006 Nov; 33(2):493-504. PubMed ID: 16959495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.