These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16001150)

  • 1. Evaluation of ionic contribution to the toxicity of a coal-mine effluent using Ceriodaphnia dubia.
    Kennedy AJ; Cherry DS; Zipper CE
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):155-62. PubMed ID: 16001150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field and laboratory assessment of a coal processing effluent in the Leading Creek Watershed, Meigs County, Ohio.
    Kennedy AJ; Cherry DS; Currie RJ
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):324-31. PubMed ID: 12712291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Biotic Ligand Model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness.
    Van Genderen E; Gensemer R; Smith C; Santore R; Ryan A
    Aquat Toxicol; 2007 Aug; 84(2):279-91. PubMed ID: 17681387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates.
    Soucek DJ; Linton TK; Tarr CD; Dickinson A; Wickramanayake N; Delos CG; Cruz LA
    Environ Toxicol Chem; 2011 Apr; 30(4):930-8. PubMed ID: 21191883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic toxicity of silver nitrate to Ceriodaphnia dubia and Daphnia magna, and potential mitigating factors.
    Naddy RB; Gorsuch JW; Rehner AB; McNerney GR; Bell RA; Kramer JR
    Aquat Toxicol; 2007 Aug; 84(1):1-10. PubMed ID: 17658626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute and chronic toxicity of effluent water from an abandoned uranium mine.
    Antunes SC; Pereira R; Gonçalves F
    Arch Environ Contam Toxicol; 2007 Aug; 53(2):207-13. PubMed ID: 17587142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hardness- and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans.
    Soucek DJ
    Environ Toxicol Chem; 2007 Apr; 26(4):773-9. PubMed ID: 17447563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Elevated Specific Conductivity on the Chronic Toxicity of Mining Influenced Streams Using Ceriodaphnia dubia.
    Armstead MY; Bitzer-Creathers L; Wilson M
    PLoS One; 2016; 11(11):e0165683. PubMed ID: 27814378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of water chemistry on the chronic toxicity of lead to the cladoceran, Ceriodaphnia dubia.
    Mager EM; Brix KV; Gerdes RM; Ryan AC; Grosell M
    Ecotoxicol Environ Saf; 2011 Mar; 74(3):238-43. PubMed ID: 21145110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the daphnids Ceriodaphnia dubia and Daphnia ambigua for their utilization in routine toxicity testing in the Southeastern United States.
    Harmon SM; Specht WL; Chandler GT
    Arch Environ Contam Toxicol; 2003 Jul; 45(1):79-85. PubMed ID: 12948176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity evaluation of waters from a tributary of the River Po using the 7-Day Ceriodaphnia dubia test.
    Viganò L; Bassi A; Garino A
    Ecotoxicol Environ Saf; 1996 Dec; 35(3):199-208. PubMed ID: 9006994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata.
    Cooper NL; Bidwell JR; Kumar A
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1523-8. PubMed ID: 19419764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of effluent toxicity as an indicator of aquatic life condition in effluent-dominated streams: a pilot study.
    Diamond J; Stribling J; Bowersox M; Latimer H
    Integr Environ Assess Manag; 2008 Oct; 4(4):456-70. PubMed ID: 18597571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent.
    Brix KV; Gerdes R; Grosell M
    Ecotoxicol Environ Saf; 2010 Oct; 73(7):1646-52. PubMed ID: 20621355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can site-specific heuristic toxicity models predict the toxicity of produced water?
    Fisher JC; Belden JB; Bidwell JR
    Chemosphere; 2010 Jul; 80(5):542-7. PubMed ID: 20466406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity.
    Yim JH; Kim KW; Kim SD
    J Hazard Mater; 2006 Nov; 138(1):16-21. PubMed ID: 16806685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of river water and salinity on the toxicity of deltamethrin to freshwater shrimp, cladoceran, and fish.
    Thomas CR; Hose GC; Warne MS; Lim RP
    Arch Environ Contam Toxicol; 2008 Nov; 55(4):610-8. PubMed ID: 18347841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioassessment of an Appalachian headwater stream influenced by an abandoned arsenic mine.
    Valenti TW; Chaffin JL; Cherry DS; Schreiber ME; Valett HM; Charles M
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):488-96. PubMed ID: 16205987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-species extrapolation of chronic nickel Biotic Ligand Models.
    Schlekat CE; Van Genderen E; De Schamphelaere KA; Antunes PM; Rogevich EC; Stubblefield WA
    Sci Total Environ; 2010 Nov; 408(24):6148-57. PubMed ID: 20920817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.