These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 16001256)

  • 1. Optimization and scale up of industrial fermentation processes.
    Schmidt FR
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):425-35. PubMed ID: 16001256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrospective optimization of time-dependent fermentation control strategies using time-independent historical data.
    Coleman MC; Block DE
    Biotechnol Bioeng; 2006 Oct; 95(3):412-23. PubMed ID: 16894631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic approach for scale-down model development and characterization of commercial cell culture processes.
    Li F; Hashimura Y; Pendleton R; Harms J; Collins E; Lee B
    Biotechnol Prog; 2006; 22(3):696-703. PubMed ID: 16739951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production.
    Pinto Mariano A; Bastos Borba Costa C; de Franceschi de Angelis D; Maugeri Filho F; Pires Atala DI; Wolf Maciel MR; Maciel Filho R
    Appl Biochem Biotechnol; 2009 Nov; 159(2):366-81. PubMed ID: 19082763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-up methodologies for Escherichia coli and yeast fermentation processes.
    Junker BH
    J Biosci Bioeng; 2004; 97(6):347-64. PubMed ID: 16233642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process.
    Zhang J; Reddy J; Buckland B; Greasham R
    Biotechnol Bioeng; 2003 Jun; 82(6):640-52. PubMed ID: 12673763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges in industrial fermentation technology research.
    Formenti LR; Nørregaard A; Bolic A; Hernandez DQ; Hagemann T; Heins AL; Larsson H; Mears L; Mauricio-Iglesias M; Krühne U; Gernaey KV
    Biotechnol J; 2014 Jun; 9(6):727-38. PubMed ID: 24846823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of kinetic models for industrial acetic fermentation: proposal of a new model optimized by genetic algorithms.
    González-Sáiz JM; Pizarro C; Garrido-Vidal D
    Biotechnol Prog; 2003; 19(2):599-611. PubMed ID: 12675605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine.
    Okonkowski J; Kizer-Bentley L; Listner K; Robinson D; Chartrain M
    Biotechnol Prog; 2005; 21(4):1038-47. PubMed ID: 16080681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.
    Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J
    Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality.
    Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A
    J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process.
    Yüzgeç U; Türker M; Hocalar A
    ISA Trans; 2009 Jan; 48(1):79-92. PubMed ID: 18849027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.
    Garcia-Ochoa F; Gomez E
    Biotechnol Adv; 2009; 27(2):153-76. PubMed ID: 19041387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodological approach to scaling up fermentation and primary recovery processes to the manufacturing scale for vaccine production.
    Lee TS
    Vaccine; 2009 Oct; 27(46):6439-43. PubMed ID: 19577635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a stochastic formulation of microbial growth in relation to bioreactor performances: case study of an E. coli fed-batch process.
    Delvigne F; Destain J; Thonart P
    Biotechnol Prog; 2006; 22(4):1114-24. PubMed ID: 16889388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fed-batch bioreactor process scale-up from 3-L to 2,500-L scale for monoclonal antibody production from cell culture.
    Yang JD; Lu C; Stasny B; Henley J; Guinto W; Gonzalez C; Gleason J; Fung M; Collopy B; Benjamino M; Gangi J; Hanson M; Ille E
    Biotechnol Bioeng; 2007 Sep; 98(1):141-54. PubMed ID: 17657776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance comparison of differential evolution techniques on optimization of feeding profile for an industrial scale baker's yeast fermentation process.
    Yüzgeç U
    ISA Trans; 2010 Jan; 49(1):167-76. PubMed ID: 19906369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey of computational and physical methods applied to solid-state fermentation.
    Lenz J; Höfer M; Krasenbrink JB; Hölker U
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):9-17. PubMed ID: 15048589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-scale study of industrial fermentation processes and their optimization.
    Zhang S; Chu J; Zhuang Y
    Adv Biochem Eng Biotechnol; 2004; 87():97-150. PubMed ID: 15217105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.