BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 16001330)

  • 1. Menin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast.
    Hendy GN; Kaji H; Sowa H; Lebrun JJ; Canaff L
    Horm Metab Res; 2005 Jun; 37(6):375-9. PubMed ID: 16001330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Menin is required for bone morphogenetic protein 2- and transforming growth factor beta-regulated osteoblastic differentiation through interaction with Smads and Runx2.
    Sowa H; Kaji H; Hendy GN; Canaff L; Komori T; Sugimoto T; Chihara K
    J Biol Chem; 2004 Sep; 279(39):40267-75. PubMed ID: 15150273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene, inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast lineage.
    Sowa H; Kaji H; Canaff L; Hendy GN; Tsukamoto T; Yamaguchi T; Miyazono K; Sugimoto T; Chihara K
    J Biol Chem; 2003 Jun; 278(23):21058-69. PubMed ID: 12649288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Menin expression is regulated by transforming growth factor beta signaling in leukemia cells.
    Zhang H; Liu ZG; Hua XX
    Chin Med J (Engl); 2011 May; 124(10):1556-62. PubMed ID: 21740816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deregulation of anti-Mullerian hormone/BMP and transforming growth factor-beta pathways in Leydig cell lesions developed in male heterozygous multiple endocrine neoplasia type 1 mutant mice.
    Hussein N; Lu J; Casse H; Fontanière S; Morera AM; Guittot SM; Calender A; Di Clemente N; Zhang CX
    Endocr Relat Cancer; 2008 Mar; 15(1):217-27. PubMed ID: 18310289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD.
    Naito J; Kaji H; Sowa H; Hendy GN; Sugimoto T; Chihara K
    J Biol Chem; 2005 Feb; 280(6):4785-91. PubMed ID: 15563473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique and redundant roles of Smad3 in TGF-beta-mediated regulation of long bone development in organ culture.
    Alvarez J; Serra R
    Dev Dyn; 2004 Aug; 230(4):685-99. PubMed ID: 15254903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Menin interacts with β-catenin in osteoblast differentiation.
    Inoue Y; Hendy GN; Canaff L; Seino S; Kaji H
    Horm Metab Res; 2011 Mar; 43(3):183-7. PubMed ID: 21264795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic lineages.
    Aziz A; Miyake T; Engleka KA; Epstein JA; McDermott JC
    Dev Biol; 2009 Aug; 332(1):116-30. PubMed ID: 19464283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Smad3, acting independently of transforming growth factor-beta, in the early induction of Wnt-beta-catenin signaling by parathyroid hormone in mouse osteoblastic cells.
    Inoue Y; Canaff L; Hendy GN; Hisa I; Sugimoto T; Chihara K; Kaji H
    J Cell Biochem; 2009 Sep; 108(1):285-94. PubMed ID: 19582775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Menin promotes the Wnt signaling pathway in pancreatic endocrine cells.
    Chen G; A J; Wang M; Farley S; Lee LY; Lee LC; Sawicki MP
    Mol Cancer Res; 2008 Dec; 6(12):1894-907. PubMed ID: 19074834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta.
    Yang YA; Tang B; Robinson G; Hennighausen L; Brodie SG; Deng CX; Wakefield LM
    Cell Growth Differ; 2002 Mar; 13(3):123-30. PubMed ID: 11959813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of menin in bone development.
    Kaji H; Canaff L; Hendy GN
    Adv Exp Med Biol; 2009; 668():59-67. PubMed ID: 20175453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-azacytidine alters TGF-beta and BMP signaling and induces maturation in articular chondrocytes.
    Zuscik MJ; Baden JF; Wu Q; Sheu TJ; Schwarz EM; Drissi H; O'Keefe RJ; Puzas JE; Rosier RN
    J Cell Biochem; 2004 May; 92(2):316-31. PubMed ID: 15108358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of disease: multiple endocrine neoplasia type 1-relation to chromatin modifications and transcription regulation.
    Dreijerink KM; Höppener JW; Timmers HM; Lips CJ
    Nat Clin Pract Endocrinol Metab; 2006 Oct; 2(10):562-70. PubMed ID: 17024155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parathyroid hormone stimulation and PKA signaling of latent transforming growth factor-beta binding protein-1 (LTBP-1) mRNA expression in osteoblastic cells.
    Kwok S; Qin L; Partridge NC; Selvamurugan N
    J Cell Biochem; 2005 Aug; 95(5):1002-11. PubMed ID: 15880704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling.
    Celil AB; Hollinger JO; Campbell PG
    J Cell Biochem; 2005 Jun; 95(3):518-28. PubMed ID: 15786511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence and convergence of TGF-beta/BMP signaling.
    Miyazono K; Kusanagi K; Inoue H
    J Cell Physiol; 2001 Jun; 187(3):265-76. PubMed ID: 11319750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways.
    Franceschi RT; Xiao G
    J Cell Biochem; 2003 Feb; 88(3):446-54. PubMed ID: 12532321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simvastatin antagonizes tumor necrosis factor-alpha inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway.
    Yamashita M; Otsuka F; Mukai T; Otani H; Inagaki K; Miyoshi T; Goto J; Yamamura M; Makino H
    J Endocrinol; 2008 Mar; 196(3):601-13. PubMed ID: 18310456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.