These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 16001721)
1. Structural properties of biodegradable polyesters and rheological behaviour of their dispersions and films. Santoveña A; Alvarez-Lorenzo C; Concheiro A; Llabrés M; Fariña JB J Biomater Sci Polym Ed; 2005; 16(5):629-41. PubMed ID: 16001721 [TBL] [Abstract][Full Text] [Related]
2. Rheological properties of PLGA film-based implants: correlation with polymer degradation and SPf66 antimalaric synthetic peptide release. Santoveña A; Alvarez-Lorenzo C; Concheiro A; Llabrés M; Fariña JB Biomaterials; 2004 Feb; 25(5):925-31. PubMed ID: 14609681 [TBL] [Abstract][Full Text] [Related]
3. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. Kranz H; Ubrich N; Maincent P; Bodmeier R J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603 [TBL] [Abstract][Full Text] [Related]
4. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery. Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548 [TBL] [Abstract][Full Text] [Related]
6. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Avgoustakis K Curr Drug Deliv; 2004 Oct; 1(4):321-33. PubMed ID: 16305394 [TBL] [Abstract][Full Text] [Related]
7. Rheological and thermal properties of polylactide/silicate nanocomposites films. Ahmed J; Varshney SK; Auras R J Food Sci; 2010 Mar; 75(2):N17-24. PubMed ID: 20492249 [TBL] [Abstract][Full Text] [Related]
8. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. Witschi C; Doelker E J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930 [TBL] [Abstract][Full Text] [Related]
9. Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables. Reich G Eur J Pharm Biopharm; 1998 Mar; 45(2):165-71. PubMed ID: 9704913 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable polymeric capsules obtained via room temperature spray drying: preparation and characterization. Stefanescu EA; Stefanescu C; Negulescu II J Biomater Appl; 2011 May; 25(8):825-49. PubMed ID: 20511383 [TBL] [Abstract][Full Text] [Related]
11. Nanotechnology for biomaterials engineering: structural characterization of amphiphilic polymeric nanoparticles by 1H NMR spectroscopy. Hrkach JS; Peracchia MT; Domb A; Lotan N; Langer R Biomaterials; 1997 Jan; 18(1):27-30. PubMed ID: 9003893 [TBL] [Abstract][Full Text] [Related]
12. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. Zhu X; Zhong T; Huang R; Wan A J Biomater Sci Polym Ed; 2015; 26(17):1286-96. PubMed ID: 26324121 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Alonso MJ; Gupta RK; Min C; Siber GR; Langer R Vaccine; 1994 Mar; 12(4):299-306. PubMed ID: 8178550 [TBL] [Abstract][Full Text] [Related]
14. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. Mallardé D; Boutignon F; Moine F; Barré E; David S; Touchet H; Ferruti P; Deghenghi R Int J Pharm; 2003 Aug; 261(1-2):69-80. PubMed ID: 12878396 [TBL] [Abstract][Full Text] [Related]
15. Self-assembled nanomicelles using PLGA-PEG amphiphilic block copolymer for insulin delivery: a physicochemical investigation and determination of CMC values. Ashjari M; Khoee S; Mahdavian AR; Rahmatolahzadeh R J Mater Sci Mater Med; 2012 Apr; 23(4):943-53. PubMed ID: 22354326 [TBL] [Abstract][Full Text] [Related]
16. Simple measurements for prediction of drug release from polymer matrices - Solubility parameters and intrinsic viscosity. Madsen CG; Skov A; Baldursdottir S; Rades T; Jorgensen L; Medlicott NJ Eur J Pharm Biopharm; 2015 May; 92():1-7. PubMed ID: 25668778 [TBL] [Abstract][Full Text] [Related]
17. Surface characterization of functionalized polylactide through the coating with heterobifunctional poly(ethylene glycol)/polylactide block copolymers. Otsuka H; Nagasaki Y; Kataoka K Biomacromolecules; 2000; 1(1):39-48. PubMed ID: 11709841 [TBL] [Abstract][Full Text] [Related]
18. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels. Tarasevich BJ; Gutowska A; Li XS; Jeong BM J Biomed Mater Res A; 2009 Apr; 89(1):248-54. PubMed ID: 18464255 [TBL] [Abstract][Full Text] [Related]
19. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Stolnik S; Dunn SE; Garnett MC; Davies MC; Coombes AG; Taylor DC; Irving MP; Purkiss SC; Tadros TF; Davis SS Pharm Res; 1994 Dec; 11(12):1800-8. PubMed ID: 7899246 [TBL] [Abstract][Full Text] [Related]
20. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol). von Burkersroda F; Gref R; Göpferich A Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]