These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 16001801)
1. [Mechanism of CO2-responsive transcriptional regulation in photosynthetic organisms: carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii]. Fukuzawa H; Yamano T Tanpakushitsu Kakusan Koso; 2005 Jul; 50(8):958-65. PubMed ID: 16001801 [No Abstract] [Full Text] [Related]
2. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Fukuzawa H; Miura K; Ishizaki K; Kucho KI; Saito T; Kohinata T; Ohyama K Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5347-52. PubMed ID: 11287669 [TBL] [Abstract][Full Text] [Related]
3. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. Yamano T; Fukuzawa H J Basic Microbiol; 2009 Feb; 49(1):42-51. PubMed ID: 19253331 [TBL] [Abstract][Full Text] [Related]
4. Significance of zinc in a regulatory protein, CCM1, which regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Kohinata T; Nishino H; Fukuzawa H Plant Cell Physiol; 2008 Feb; 49(2):273-83. PubMed ID: 18202004 [TBL] [Abstract][Full Text] [Related]
5. Two adjacent nuclear genes are required for functional complementation of a chloroplast trans-splicing mutant from Chlamydomonas reinhardtii. Balczun C; Bunse A; Hahn D; Bennoun P; Nickelsen J; Kück U Plant J; 2005 Sep; 43(5):636-48. PubMed ID: 16115062 [TBL] [Abstract][Full Text] [Related]
6. CO2 limitation induces specific redox-dependent protein phosphorylation in Chlamydomonas reinhardtii. Turkina MV; Blanco-Rivero A; Vainonen JP; Vener AV; Villarejo A Proteomics; 2006 May; 6(9):2693-704. PubMed ID: 16572472 [TBL] [Abstract][Full Text] [Related]
7. Light and low-CO2-dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Yamano T; Tsujikawa T; Hatano K; Ozawa S; Takahashi Y; Fukuzawa H Plant Cell Physiol; 2010 Sep; 51(9):1453-68. PubMed ID: 20660228 [TBL] [Abstract][Full Text] [Related]
8. The novel Myb transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Yoshioka S; Taniguchi F; Miura K; Inoue T; Yamano T; Fukuzawa H Plant Cell; 2004 Jun; 16(6):1466-77. PubMed ID: 15155888 [TBL] [Abstract][Full Text] [Related]
9. The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Xiang Y; Zhang J; Weeks DP Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5341-6. PubMed ID: 11309511 [TBL] [Abstract][Full Text] [Related]
10. Cadmium- and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation. Rubinelli P; Siripornadulsil S; Gao-Rubinelli F; Sayre RT Planta; 2002 May; 215(1):1-13. PubMed ID: 12012236 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Crespo JL; Díaz-Troya S; Florencio FJ Plant Physiol; 2005 Dec; 139(4):1736-49. PubMed ID: 16299168 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of two closely related beta-carbonic anhydrases from Chlamydomonas reinhardtii. Ynalvez RA; Xiao Y; Ward AS; Cunnusamy K; Moroney JV Physiol Plant; 2008 May; 133(1):15-26. PubMed ID: 18405332 [TBL] [Abstract][Full Text] [Related]
13. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. Gao H; Wang Y; Fei X; Wright DA; Spalding MH Plant J; 2015 Apr; 82(1):1-11. PubMed ID: 25660294 [TBL] [Abstract][Full Text] [Related]
14. The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Bonente G; Passarini F; Cazzaniga S; Mancone C; Buia MC; Tripodi M; Bassi R; Caffarri S Photochem Photobiol; 2008; 84(6):1359-70. PubMed ID: 19067957 [TBL] [Abstract][Full Text] [Related]
15. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Atkinson N; Feike D; Mackinder LC; Meyer MT; Griffiths H; Jonikas MC; Smith AM; McCormick AJ Plant Biotechnol J; 2016 May; 14(5):1302-15. PubMed ID: 26538195 [TBL] [Abstract][Full Text] [Related]
16. Prospects for molecular farming in the green alga Chlamydomonas. Franklin SE; Mayfield SP Curr Opin Plant Biol; 2004 Apr; 7(2):159-65. PubMed ID: 15003216 [TBL] [Abstract][Full Text] [Related]
17. Induction of a high-CO2-inducible, periplasmic protein, H43, and its application as a high-CO2-responsive marker for study of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii. Hanawa Y; Watanabe M; Karatsu Y; Fukuzawa H; Shiraiwa Y Plant Cell Physiol; 2007 Feb; 48(2):299-309. PubMed ID: 17202179 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary processes during the formation of the plant-specific Dof transcription factor family. Shigyo M; Tabei N; Yoneyama T; Yanagisawa S Plant Cell Physiol; 2007 Jan; 48(1):179-85. PubMed ID: 17132629 [TBL] [Abstract][Full Text] [Related]
19. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Depège N; Bellafiore S; Rochaix JD Science; 2003 Mar; 299(5612):1572-5. PubMed ID: 12624266 [TBL] [Abstract][Full Text] [Related]