BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16002065)

  • 1. A conserved, extended chromatin opening within alpha-globin locus during development.
    Fu XH; Liu DP; Tang XB; Liu G; Lv X; Li YJ; Liang CC
    Exp Cell Res; 2005 Sep; 309(1):174-84. PubMed ID: 16002065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental stage differences in chromatin subdomains of the beta-globin locus.
    Kim A; Dean A
    Proc Natl Acad Sci U S A; 2004 May; 101(18):7028-33. PubMed ID: 15105444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes in DNA methylation and covalent histone modifications of chromatin associated with the epsilon-, gamma-, and beta-globin gene promoters in Papio anubis.
    Lavelle D; Vaitkus K; Hankewych M; Singh M; DeSimone J
    Blood Cells Mol Dis; 2006; 36(2):269-78. PubMed ID: 16527500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus.
    Litt MD; Simpson M; Gaszner M; Allis CD; Felsenfeld G
    Science; 2001 Sep; 293(5539):2453-5. PubMed ID: 11498546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Patterns of the histone modifications across the chicken alpha-globin genes domain].
    Iudinkova ES; Bunina DA; Ul'ianov SV; Gavrilov AA; Razin SV
    Mol Biol (Mosk); 2011; 45(4):662-7. PubMed ID: 21954598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic control of ovarian function: the emerging role of histone modifications.
    LaVoie HA
    Mol Cell Endocrinol; 2005 Nov; 243(1-2):12-8. PubMed ID: 16219412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of DNA methylation in setting up chromatin structure during development.
    Hashimshony T; Zhang J; Keshet I; Bustin M; Cedar H
    Nat Genet; 2003 Jun; 34(2):187-92. PubMed ID: 12740577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chicken alpha-globin switching depends on autonomous silencing of the embryonic pi globin gene by epigenetics mechanisms.
    Rincón-Arano H; Guerrero G; Valdes-Quezada C; Recillas-Targa F
    J Cell Biochem; 2009 Oct; 108(3):675-87. PubMed ID: 19693775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene order in human alpha-globin locus is required for their temporal specific expressions.
    Tang Y; Wang Z; Huang Y; Liu DP; Liu G; Shen W; Tang X; Feng D; Liang CC
    Genes Cells; 2006 Feb; 11(2):123-31. PubMed ID: 16436049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Juxtaposition of the HPFH2 enhancer is not sufficient to reactivate the gamma-globin gene in adult erythropoiesis.
    Xiang P; Han H; Barkess G; Olave I; Fang X; Yin W; Stamatoyannopoulos G; Li Q
    Hum Mol Genet; 2005 Oct; 14(20):3047-56. PubMed ID: 16155112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes.
    Schneider R; Bannister AJ; Myers FA; Thorne AW; Crane-Robinson C; Kouzarides T
    Nat Cell Biol; 2004 Jan; 6(1):73-7. PubMed ID: 14661024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive promoter occupancy by the MBF-1 activator and chromatin modification of the developmental regulated sea urchin alpha-H2A histone gene.
    Di Caro V; Cavalieri V; Melfi R; Spinelli G
    J Mol Biol; 2007 Feb; 365(5):1285-97. PubMed ID: 17134720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cluster specific regulation pattern of upstream regulatory elements in human alpha- and beta-globin gene clusters.
    Tang Y; Huang Y; Shen W; Liu G; Wang Z; Tang XB; Feng DX; Liu DP; Liang CC
    Exp Cell Res; 2008 Jan; 314(1):115-22. PubMed ID: 17996867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of intergenic human gamma-delta-globin sequences in human hemoglobin switching and reactivation of fetal hemoglobin in adult erythroid cells.
    Bank A; O'Neill D; Lopez R; Pulte D; Ward M; Mantha S; Richardson C
    Ann N Y Acad Sci; 2005; 1054():48-54. PubMed ID: 16339651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Onset and inheritance of abnormal epigenetic regulation in hematopoietic cells.
    Bottardi S; Bourgoin V; Pierre-Charles N; Milot E
    Hum Mol Genet; 2005 Feb; 14(4):493-502. PubMed ID: 15615768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition.
    Garcia BA; Busby SA; Shabanowitz J; Hunt DF; Mishra N
    J Proteome Res; 2005; 4(6):2032-42. PubMed ID: 16335948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice.
    Tsuji H; Saika H; Tsutsumi N; Hirai A; Nakazono M
    Plant Cell Physiol; 2006 Jul; 47(7):995-1003. PubMed ID: 16774928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world.
    Forsberg EC; Bresnick EH
    Bioessays; 2001 Sep; 23(9):820-30. PubMed ID: 11536294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of globin genes and histone variants in micrococcal nuclease-generated subfractions of chromatin from Friend erythroleukemia cells at different malignant states.
    Leonardson KE; Levy SB
    J Cell Biochem; 1994 Jan; 54(1):110-21. PubMed ID: 8126082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone acetylation and methylation: combinatorial players for transcriptional regulation.
    An W
    Subcell Biochem; 2007; 41():351-69. PubMed ID: 17484136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.