BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16002066)

  • 1. Regulation of potassium transport in human lens epithelial cells.
    Lauf PK; Warwar R; Brown TL; Adragna NC
    Exp Eye Res; 2006 Jan; 82(1):55-64. PubMed ID: 16002066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.
    Lauf PK; Misri S; Chimote AA; Adragna NC
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C820-32. PubMed ID: 18184876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of glial cell K-Cl cotransport.
    Gagnon KB; Adragna NC; Fyffe RE; Lauf PK
    Cell Physiol Biochem; 2007; 20(1-4):121-30. PubMed ID: 17595522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two different oxygen sensors regulate oxygen-sensitive K+ transport in crucian carp red blood cells.
    Berenbrink M; Völkel S; Koldkjaer P; Heisler N; Nikinmaa M
    J Physiol; 2006 Aug; 575(Pt 1):37-48. PubMed ID: 16763000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Down-regulation of Na-K-Cl cotransport by protein kinase C is mediated by protein phosphatase 1 in pigmented ciliary epithelial cells.
    Layne J; Yip S; Crook RB
    Exp Eye Res; 2001 Apr; 72(4):371-9. PubMed ID: 11273665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Na+-K+-2Cl- cotransport in turkey red cells: the role of oxygen tension and protein phosphorylation.
    Muzyamba MC; Cossins AR; Gibson JS
    J Physiol; 1999 Jun; 517 ( Pt 2)(Pt 2):421-9. PubMed ID: 10332092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.
    Lauf PK; Chimote AA; Adragna NC
    Cell Physiol Biochem; 2008; 21(5-6):335-46. PubMed ID: 18453742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signalling mechanisms underlying the rapid and additive stimulation of NKCC activity by insulin and hypertonicity in rat L6 skeletal muscle cells.
    Zhao H; Hyde R; Hundal HS
    J Physiol; 2004 Oct; 560(Pt 1):123-36. PubMed ID: 15284343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of K-Cl cotransport in erythrocytes of frog Rana temporaria by commonly used protein kinase and protein phosphatase inhibitors.
    Gusev GP; Agalakova NI
    J Comp Physiol B; 2010 Mar; 180(3):385-91. PubMed ID: 19936761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K-Cl cotransport: immunohistochemical and ion flux studies in human embryonic kidney (HEK293) cells transfected with full-length and C-terminal-domain-truncated KCC1 cDNAs.
    Lauf PK; Zhang J; Gagnon KB; Delpire E; Fyffe RE; Adragna NC
    Cell Physiol Biochem; 2001; 11(3):143-60. PubMed ID: 11410710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Furosemide-sensitive K+ transport in transformed and nontransformed rat liver epithelial cells: regulation by protein kinase C and involvement in cell growth.
    Anger JP; Vernhet L; Hichami A; Corlu A; Lepalabe E; Troussard A; Legrand A
    Arch Int Pharmacodyn Ther; 1995; 329(2):307-18. PubMed ID: 8540769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluoxetine inhibits K(+) transport pathways (K(+) efflux, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) pump) underlying volume regulation in corneal endothelial cells.
    Hara E; Reinach PS; Wen Q; Iserovich P; Fischbarg J
    J Membr Biol; 1999 Sep; 171(1):75-85. PubMed ID: 10485996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K(+) transport and volume regulatory response by NKCC in resting rat hindlimb skeletal muscle.
    Lindinger MI; Hawke TJ; Lipskie SL; Schaefer HD; Vickery L
    Cell Physiol Biochem; 2002; 12(5-6):279-92. PubMed ID: 12438764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation by N-ethylmaleimide of a latent K+-Cl- flux in human red blood cells.
    Lauf PK; Adragna NC; Garay RP
    Am J Physiol; 1984 May; 246(5 Pt 1):C385-90. PubMed ID: 6720936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phorbol 12-myristate 13-acetate on potassium transport in the red blood cells of frog Rana temporaria.
    Agalakova NI; Gusev GP
    J Comp Physiol B; 2009 May; 179(4):443-50. PubMed ID: 19112570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canonical Bcl-2 motifs of the Na+/K+ pump revealed by the BH3 mimetic chelerythrine: early signal transducers of apoptosis?
    Lauf PK; Heiny J; Meller J; Lepera MA; Koikov L; Alter GM; Brown TL; Adragna NC
    Cell Physiol Biochem; 2013; 31(2-3):257-76. PubMed ID: 23466888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K-Cl cotransport in red blood cells from patients with KCC3 isoform mutants.
    Lauf PK; Adragna NC; Dupre N; Bouchard JP; Rouleau GA
    Biochem Cell Biol; 2006 Dec; 84(6):1034-44. PubMed ID: 17215889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of sodium transport in rat erythrocytes by inhibition of protein phosphatases 1 and 2A.
    Ivanova TI; Agalakova NI; Gusev GP
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Sep; 145(1):60-7. PubMed ID: 16875859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha1-AR-mediated activation of NKCC in rat cardiomyocytes involves ERK-dependent phosphorylation of the cotransporter.
    Andersen GØ; Skomedal T; Enger M; Fidjeland A; Brattelid T; Levy FO; Osnes JB
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1354-60. PubMed ID: 14630635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the Na+/K+/Cl- transporter in the positive inotropic effect of ouabain in cardiac myocytes.
    Panet R; Fixler R; Snyder D; Raz S; Atlan H; Eilam Y; Hasin Y
    J Cell Physiol; 1990 Oct; 145(1):24-9. PubMed ID: 2211841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.