These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 16002104)

  • 1. Is stimulation of carotenoid biosynthesis in arbuscular mycorrhizal roots a general phenomenon?
    Fester T; Wray V; Nimtz M; Strack D
    Phytochemistry; 2005 Aug; 66(15):1781-6. PubMed ID: 16002104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots.
    Fester T; Schmidt D; Lohse S; Walter MH; Giuliano G; Bramley PM; Fraser PD; Hause B; Strack D
    Planta; 2002 Nov; 216(1):148-54. PubMed ID: 12430024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation.
    Walter MH; Floss DS; Hans J; Fester T; Strack D
    Phytochemistry; 2007 Jan; 68(1):130-8. PubMed ID: 17084869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum.
    Schliemann W; Schmidt J; Nimtz M; Wray V; Fester T; Strack D
    Phytochemistry; 2006 Jun; 67(12):1196-205. PubMed ID: 16790253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolite profiling of mycorrhizal roots of Medicago truncatula.
    Schliemann W; Ammer C; Strack D
    Phytochemistry; 2008 Jan; 69(1):112-46. PubMed ID: 17706732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots.
    Strack D; Fester T
    New Phytol; 2006; 172(1):22-34. PubMed ID: 16945086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis.
    Akiyama K
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1405-14. PubMed ID: 17587670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes.
    Floss DS; Hause B; Lange PR; Küster H; Strack D; Walter MH
    Plant J; 2008 Oct; 56(1):86-100. PubMed ID: 18557838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of apocarotenoids in mycorrhizal roots of leek (Allium porrum).
    Schliemann W; Kolbe B; Schmidt J; Nimtz M; Wray V
    Phytochemistry; 2008 May; 69(8):1680-8. PubMed ID: 18384822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots.
    Fester T; Hause B; Schmidt D; Halfmann K; Schmidt J; Wray V; Hause G; Strack D
    Plant Cell Physiol; 2002 Mar; 43(3):256-65. PubMed ID: 11917079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Chromoplast" development in arbuscular mycorrhizal roots.
    Fester T; Lohse S; Halfmann K
    Phytochemistry; 2007 Jan; 68(1):92-100. PubMed ID: 17137610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions.
    Sun Z; Hans J; Walter MH; Matusova R; Beekwilder J; Verstappen FW; Ming Z; van Echtelt E; Strack D; Bisseling T; Bouwmeester HJ
    Planta; 2008 Oct; 228(5):789-801. PubMed ID: 18716794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus.
    Wu N; Huang H; Zhang S; Zhu YG; Christie P; Zhang Y
    Environ Pollut; 2009 May; 157(5):1613-8. PubMed ID: 19168268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots.
    Liu J; Maldonado-Mendoza I; Lopez-Meyer M; Cheung F; Town CD; Harrison MJ
    Plant J; 2007 May; 50(3):529-44. PubMed ID: 17419842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress.
    Khalvati MA; Hu Y; Mozafar A; Schmidhalter U
    Plant Biol (Stuttg); 2005 Nov; 7(6):706-12. PubMed ID: 16388474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of carotenoid biosynthesis genes during carrot root development.
    Clotault J; Peltier D; Berruyer R; Thomas M; Briard M; Geoffriau E
    J Exp Bot; 2008; 59(13):3563-73. PubMed ID: 18757491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L.
    Rapparini F; Llusià J; Peñuelas J
    Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of root-specific carotenoid precursor pathways for apocarotenoid signal biogenesis.
    Walter MH; Stauder R; Tissier A
    Plant Sci; 2015 Apr; 233():1-10. PubMed ID: 25711808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis.
    López-Ráez JA; Fernández I; García JM; Berrio E; Bonfante P; Walter MH; Pozo MJ
    Plant Sci; 2015 Jan; 230():59-69. PubMed ID: 25480008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jasmonates in arbuscular mycorrhizal interactions.
    Hause B; Mrosk C; Isayenkov S; Strack D
    Phytochemistry; 2007 Jan; 68(1):101-10. PubMed ID: 17097695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.