These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16002436)

  • 1. Fluid volume or arterial pressure, that is the question.
    Persson PB
    J Physiol; 2005 Sep; 567(Pt 2):361. PubMed ID: 16002436
    [No Abstract]   [Full Text] [Related]  

  • 2. Furosemide-induced renal medullary hypoperfusion in the rat: role of tissue tonicity, prostaglandins and angiotensin II.
    Dobrowolski L; Sadowski J
    J Physiol; 2005 Sep; 567(Pt 2):613-20. PubMed ID: 15961422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in renal medullary volume account for the relationship between arterial pressure and renal medullary interstitial cell lipid granule content.
    O'Connor P
    Clin Exp Pharmacol Physiol; 2004 Sep; 31(9):658; author reply 657. PubMed ID: 15479178
    [No Abstract]   [Full Text] [Related]  

  • 4. Functional dilatation and medial remodeling of the renal artery in response to chronic increased blood flow.
    Roan JN; Yeh CY; Chiu WC; Lee CH; Chang SW; Jiangshieh YF; Tsai YC; Lam CF
    Kidney Blood Press Res; 2011; 34(6):447-56. PubMed ID: 21791926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree.
    Marsh DJ; Sosnovtseva OV; Mosekilde E; Holstein-Rathlou NH
    Chaos; 2007 Mar; 17(1):015114. PubMed ID: 17411271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal medullary circulation.
    Pallone TL; Edwards A; Mattson DL
    Compr Physiol; 2012 Jan; 2(1):97-140. PubMed ID: 23728972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The arterial system pressure-volume loop.
    Quick CM; Mohiuddin MW; Laine GA; Noordergraaf A
    Physiol Meas; 2005 Dec; 26(6):N29-35. PubMed ID: 16311438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasibility study on model-based evaluation of kidney perfusion measured by means of FAIR prepared true-FISP arterial spin labeling (ASL) on a 3-T MR scanner.
    Kiefer C; Schroth G; Gralla J; Diehm N; Baumgartner I; Husmann M
    Acad Radiol; 2009 Jan; 16(1):79-87. PubMed ID: 19064215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural control of renal medullary perfusion.
    Eppel GA; Malpas SC; Denton KM; Evans RG
    Clin Exp Pharmacol Physiol; 2004; 31(5-6):387-96. PubMed ID: 15191418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of catecholaminergic neurones of the caudal ventrolateral medulla in cardiovascular responses induced by acute changes in circulating volume in rats.
    Pedrino GR; Maurino I; de Almeida Colombari DS; Cravo SL
    Exp Physiol; 2006 Nov; 91(6):995-1005. PubMed ID: 16916893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing blood flow control through a bootstrap method.
    Simpson DM; Panerai RB; Ramos EG; Lopes JM; Marinatto MN; Nadal J; Evans DH
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1284-6. PubMed ID: 15248547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between blood pressure and blood flow in newborn preterm infants.
    Groves AM; Kuschel CA; Knight DB; Skinner JR
    Arch Dis Child Fetal Neonatal Ed; 2008 Jan; 93(1):F29-32. PubMed ID: 17475696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR quantification of flow in abdominal vessels.
    Debatin JF
    Abdom Imaging; 1998; 23(5):485-95. PubMed ID: 9841061
    [No Abstract]   [Full Text] [Related]  

  • 14. Specific features and roles of renal circulation: angiotensin II revisited.
    Sadowski J; Badzyńska B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 11():169-78. PubMed ID: 17244948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal medullary red cell and plasma flow as studied with labelled indicators and internal detection.
    Wolgast M
    Acta Physiol Scand; 1973 Jun; 88(2):215-25. PubMed ID: 4764180
    [No Abstract]   [Full Text] [Related]  

  • 16. The limited effect of breathing frequency on blood velocity measurements in renal and superior mesenteric arteries.
    Someya N; Endo MY; Fukuba Y; Hayashi N
    Physiol Meas; 2007 Nov; 28(11):1369-74. PubMed ID: 17978421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of renal medullary circulation by the renin-angiotensin system in genetically hypertensive rats.
    Liu KL
    Clin Exp Pharmacol Physiol; 2009 May; 36(5-6):455-61. PubMed ID: 19215237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasoconstriction and blood flow responses in visceral arteries to mental task in humans.
    Hayashi N; Someya N; Endo MY; Miura A; Fukuba Y
    Exp Physiol; 2006 Jan; 91(1):215-20. PubMed ID: 16239251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The predictive value of arterial renal blood flow parameters in renal graft survival.
    Łebkowska U; Malyszko J; Łebkowski W; Brzósko S; Kowalewski R; Łebkowski T; Janica J; Michalak P; Gacko M; Myśliwiec M; Walecki J
    Transplant Proc; 2007 Nov; 39(9):2727-9. PubMed ID: 18021970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.