BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

21 related articles for article (PubMed ID: 1600246)

  • 1. Matrix metalloproteinase-9 in a unique proteoglycan form in avian embryonic growth plate cartilage.
    Patchigolla RK; Knudson W; Schmid TM
    Arch Biochem Biophys; 2012 Apr; 520(1):42-50. PubMed ID: 22349360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation.
    Wei L; Kanbe K; Lee M; Wei X; Pei M; Sun X; Terek R; Chen Q
    Dev Biol; 2010 May; 341(1):236-45. PubMed ID: 20206617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture of chondrocytes in alginate gel: variations in conditions of gelation influence the structure of the alginate gel, and the arrangement and morphology of proliferating chondrocytes.
    Aydelotte MB; Thonar EJ; Mollenhauer J; Flechtenmacher J
    In Vitro Cell Dev Biol Anim; 1998 Feb; 34(2):123-30. PubMed ID: 9542649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type X collagen degradation in long-term serum-free culture of the embryonic chick tibia following production of active collagenase and gelatinase.
    Cole AA; Boyd T; Luchene L; Kuettner KE; Schmid TM
    Dev Biol; 1993 Oct; 159(2):528-34. PubMed ID: 8405676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term organ culture of embryonic chick femora: a system for investigating bone and cartilage formation at an intermediate level of organization.
    Roach HI
    J Bone Miner Res; 1990 Jan; 5(1):85-100. PubMed ID: 2309583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased cell diameter precedes chondrocyte terminal differentiation, whereas cell-matrix attachment complex proteins appear constant.
    Hirsch MS; Cook SC; Killiany R; Hartford Svoboda KK
    Anat Rec; 1996 Mar; 244(3):284-96. PubMed ID: 8742695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrocyte and osteoblast differentiation stage-specific monoclonal antibodies as a tool to investigate the initial bone formation in developing chick embryo.
    Galotto M; Campanile G; Banfi A; Trugli M; Cancedda R
    Eur J Cell Biol; 1995 Jun; 67(2):99-105. PubMed ID: 7664760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro.
    Lian JB; McKee MD; Todd AM; Gerstenfeld LC
    J Cell Biochem; 1993 Jun; 52(2):206-19. PubMed ID: 8366137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cartilage turnover in embryonic chick tibial explant cultures.
    Orth MW; Peters TL; Chlebek-Brown KA
    Poult Sci; 2000 Jul; 79(7):990-3. PubMed ID: 10901200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type X collagen: a hypertrophic cartilage-specific molecule.
    Linsenmayer TF; Eavey RD; Schmid TM
    Pathol Immunopathol Res; 1988; 7(1-2):14-9. PubMed ID: 3065766
    [No Abstract]   [Full Text] [Related]  

  • 11. The influence of bone and marrow on cartilage hypertrophy and degradation during 30-day serum-free culture of the embryonic chick tibia.
    Cole AA; Luchene LJ; Linsenmayer TF; Schmid TM
    Dev Dyn; 1992 Mar; 193(3):277-85. PubMed ID: 1600246
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.